|
Online Manual for the |
|||||||||||||||||||||||||||||||||
7 Image intensity Processing7.1 Brightness and Contrast
7.2 Non-linear contrast stretching7.2.1 Equalization
7.2.2 GammaThis can be though of as a non-linear histogram adjustment. Faint objects can be made more intense without saturating bright objects (gamma <1). Similarly, medium-intensity objects can be made fainter without dimming the bright objects (gamma > 1). The intensity of each pixel is “raised to the power” of the gamma value and then scaled to 8-bits or the min and max of 16-bit images. For 8 bit images; New intensity = 255 × [(old intensity÷255) gamma] Gamma can be adjusted via the “Process/Math/Gamma” command or the “Plugins/Utilities/Gamma Scroll-bar” plugin. The latter will open up a new window copy of your image and you can adjust the gamma with the scroll bar. Click on “Done” when you are finished. This is a bit flaky and doesn’t react well if you change images in mid-adjust! This does not work on stacks. You can use the Scroll-bar to determine the desired gamma value on one slice of your stack, and then apply this gamma value to the stack via the “Process/Math/Gamma” command.
7.4 FilteringSee the online reference: http://www.dai.ed.ac.uk/HIPR2/filtops.htm for a simple explanation of digital filtering. Filters can be found under the menu item “Process/Filters...”. Typically use a “Radius (pixels)” of 1 which equates to a 3×3 “kernel” – see online reference. Mean filter: the pixel is replaced with the average of it and its neighbours within the radius. The menu item “Process/Smooth” is a 3×3 mean filter. Gaussian filter: The is similar to smoothing but replaces the pixel with a pixel of value proportional to a normal distribution of it’s neighbours – not explained well, I know, but you’ve probably skipped the online reference and you need to read that to understand the way the filter works properly. Median filter: the pixel is replaced with the median of it and its adjacent neighbours. This removes noise and preserves boundaries better than simple mean filtering, but can look odd. (The menu item “Process/Noise/Despeckle” is a 3×3 median filter). Kalman filter : Sophisticated filtering for time-course experiments – a sort of “weighted running average”. Best used if the sample frequency is higher than the “event” frequency i.e. slowly occurring events. Otherwise you get odd, blurry results. “Process/Filter/Kalman Stack…”. Sigma filter: A modification on the standard mean filter but preserves edges better – can be though of as a “gentle smooth”. The user specifies the kernel size, the Sigma width and the minimum number of pixels to include. A Sigma value for the kernel is calculated (based on the variance and mean of the intensities) and only pixels within this Sigma range (= Sigma × the user defined Sigma Width scaling factor) are used to calculate the mean. If there are too few pixels (exact number set in the user dialog: Minimum number of pixels) in the kernel that are within the Sigma range then the central pixel which is assumed to be spuriously low or high and the mean of the rest of the kernel is taken. Increasing the Sigma width and the minimum number of pixels results in increased smoothing and loss of edges. This plugin is under development, please send me any feedback. “Process/Filter/Sigma Filter…” J.S. Lee, Digital Image Smoothing and the Sigma Filter, Computer Vision, Graphics, and Image Processing 24, (1983) p. 255-269. Anisotropic Diffusion. This is an edge preserving smoothing filter.
7.5 Background correctionBackground correction can be done in several ways and is facilitated if the grey image has the “Plugins/LUT/Hi Lo indicator” (Hotkey: F1) LUT loaded. This displays the zero values blue and the 255 white values red. If the background is relatively even across the image, it is most simply remove with the Brightness&Contrast command – slowly raise the Minimum value until most of the background is displayed blue. The press the Apply button to change the grey-values and remove the background. 7.5.1 Rolling-Ball background correctionFor uneven background the menu command “Process/Subtract background” can be used. This menu command removes uneven background from images using a “rolling ball” algorithm. The radius should be set to at least the size of the largest object that is not part of the background. It can also be used to remove background from gels where the background is white. Running the command several times may produce better results.
Once the background has been evened, final adjustments can be made with the Brightness&Contrast control.
7.5.2 ROI background correctionThe rolling-ball algorithm is time consuming. If the background is even across the field of view it is possible to select a background region of interest and subtract the mean value of this area for each slice from each slice. Use the selection tools to select an area of background and run the menu command “Plugins/ROI/BG Subtraction from ROI”. This macro will subtract the mean of the ROI from the image plus an additional value equal to the standard deviation of the ROI multiplied by the scaling factor you enter (3 by default). i.e. it subtracts [mean + (sd×scalingfactor)] This macro also works with stacks and so can be used with time-courses with varying background.
7.1 Flat-field correction7.1.1 Proper correctionThis technique is applied to brightfield images. Uneven illumination, dirt/dust on lenses can result in a poor quality image. This can be corrected by acquiring a “flat-field” reference image with the same intensity illumination as the experiment. The flat field image should, ideally, be a field of view of the coverslip without any cells/debris. This is often not possible with the experimental coverslip, so a fresh coverslip may be used with approximately the same amount of buffer as the experiment. With fixed-specimens try removing the slide completely
7.1.2 Pseudo-correction
7.1.3 FFT background correctionWe sometimes see uneven illumination and also horizontal "scan lines" in transmitted light images acquired with confocal microscopes. This background can be corrected using the native FFT bandpass function (Process/FFT/Bandpass...). Experiment with the settings to optimise the filtering.
7.2 Masking unwanted regions7.2.1 Simple maskingDraw around the area you want with one of the ROI tools then use: “Edit/Clear outside”. This will change area outside the selected region to the background value.
7.2.2 Complex maskingA more sophisticated masking can be done by “thresholding” the image and subtracting this new binary image from the original. 1. Duplicate the image (if it’s a stack it’s worthwhile generating a “average projection” of a few frames). 2. Threshold this image using the menu command “Image/Adjust/Threshold” (hotkey Shift+T). 3. Hit the Auto button and then adjust the sliders until cells are all highlighted red. 4. Then click “Apply”. Check the tick box: “black foreground, white background”. You should now have a white and black image with your cells black and background white. If you have white cells and black background, invert the image with “Edit/Invert”. 5. This can be smoothed (“Process/Smooth”) and the black area enlarged slightly with “Process/Binary/Dilate” to give a better mask 6. Using the regular Image calculator “Process/Image calculator” subtract this black and white “mask” image from your original image/stack.
|