OPTIMIZED FAST HARTLEY TRANSFORM FOR THE M C68000
WITH APPLICATIONSIN IMAGE PROCESSING

A THESIS
SUBMITTED TO THE FACULTY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE
BY

A. ARLO REEVES

THAYER SCHOOL OF ENGINEERING
DARTMOUTH COLLEGE
HANOVER, NEW HAMPSHIRE

MARCH, 1990

Examining Committee:

Professor Eric Hansen

Professor Charles Daghlian

Dean of Graduate Studies Professor 1an Baker

© 1990 Trustees of Dartmouth College A. Arlo Reeves

THAYER SCHOOL OF ENGINEERING

DARTMOUTH COLLEGE

OPTIMIZED FAST HARTLEY TRANSFORM FOR THE M C68000
WITH APPLICATIONSIN IMAGE PROCESSING

A. ARLO REEVES

MASTER OF SCIENCE

ABSTRACT

Although Fourier transform technigques have seen wide use in image processing since the de-
velopment of the Fast Fourier Transform algorithm in 1965, the process remains computation in-
tensive and is normally used only by those with large computers or specialized hardware. This
work describes the development of code which takes advantage of recent advancements in trans-
form algorithms and microprocessor technology to make frequency domain image manipulation
available and convenient for the persona computer user. Specificaly, a one dimensional, deci-
mation-in-time Fast Hartley Transform algorithm and a host of support routines have been coded
and optimized in MC68000 assembly language using integer arithmetic. This code was then in-
corporated into Image, a full-featured image processing program for the Macintosh |1 devel oped
at the Nationa Institutes of Health. The resulting program can compute and display the power
spectrum of a 256x256 pixel image in 10 seconds and alows frequency domain editing and in-
verse transformation. Dyadic frequency domain operations are also supported, providing convo-
lution and correlation capability. All of these features are made particularly accessible through a
consistent implementation of the Macintosh user interface. To illustrate Image’s utility in

frequency domain image processing applications, several examples are presented.

ACKNOWLEDGEMENTS

| would like to thank Charles Daghlian for supporting me in this endeavor from the start.
Thanks, too, to Adam Erickson who undertook a hardware implementation of the fast Hartley
transform as | developed my software; our discussions often took us right down to the bits and
this was very helpful. Mark Vaence was adways there to patiently answer my questions
regarding the complex workings of the Macintosh Toolbox. Eric Hansen provided many
informative discussions and the creation of Thayer’s first course in image processing. Without

the help of these people, completing this project would not have been possible.

TABLE OF CONTENTS

(2 1 g 110 o [§Tox 1 o o F RSP RTPR 1
1. TRE FIISt DECISIONSccoiieieiiiie ettt ettt et e e snn e e e sne e e saree e 3
1.1 Choosing an Existing Platform: The Image Program...........ccccceevvcvveeeecnnen. 3
1.2 Choosing a NUMbBEr SysStem.........coociiiii i 4
1.3 Choosing AN AlQOMthM........cuvviii i 5
2. Mathematical FOUNTaLIONScoiuiiiiiieiiie e 9
2.1 The Fourier and Hartley Transforms...........ccceveeiiiiiee e 9
2.2 The Discrete Fourier & Hartley Transform..........cccoceeeevvcieeeciciiiiee e 12
2.3 The Fast Fourier TransformM..........coovueriiiieeiiiee e 16
2.4 The Fast Hartley Transform...........ooooiiiiiee i 19
3. Details of the FHT AIQOrthM........ccuvieiiieeee e 23
3. 1MaKING the FHT FaStccciiiiieieciee e 23
3.2 MaKiNg the FHT ACCUIELE...........uveee ettt 28
3.3 The Fully Evolved FHT AIQOrithmccooiiiiiiiiiiiee e 32
4. Details of the Utility ROULINESooiiiiiiie e 35
4.1 The Fully Evolved Two Dimensional FHT Algorithmcccoocvveeiiiienene 45
5. Incorporating the FHT INtO IMAJEeoiiiiiiiiiieiee e 51
5.1 User Interface CoNSIAErations..........cc.eeeiiieeiiiieiiiee e 51
5.2 Operations SUPPOITEX.........ueeiiiiiiiee ettt e e e e e snnee e 54
5.3 Using the Macintosh TOOIDOX........ccccuiiiiieiiiiiiee e 56
N ool o= (o ST USRS 58
6.1 IMage RESIOIAION ...t 58
6.2 Image ENhanCementc.oooiiiiiiie s 62
6.3 Pattern RECOGNITION..........vvieiiiiiiie et 66
7. CONCIUSION ...ttt ettt e e b e e e nab e e e ssbe e s emne e e snneeesnseeeanes 69
7.1 FUture DeVEl OPMENT.........vviii e 69
Appendix A: FFT Extensionsto Image 1.25.........cooiiiiiiiieeee e 71
Appendix B: Execution Times for the FHT Routine Libraryccccoocvvveeiiiinnenn. 87
Appendix C: Use With Other Languages and Other 68000 Systems.............ccveeenn. 89
Appendix D: ReSOUICE FOIMIELScceiiiiiiie et c et e nnnee e 91
Appendix E: THINK Pascal Source Code..........ouieiiiiieeeiiiiiie et csiiee e esineee e 93
Appendix F: MC68000 Assembly Language Source Code..........cccceeevviveeeeeiiineneenns 97
BiblIOGraphyeoeeee e 131

L1ST OF TABLES

Table 1. Power Spectrum, Magnitude and Phase as calculated from

the Fourier and Hartley Transforms.........ccccoccvveeeeiiiiieee e,
Table 2: Theorems for the Fourier and Hartley transforms............ccccccoueee.
Table 3: Theoremsfor the DFT and DHTooooiiiiiiiiiiiieeeeeee e
Table 4: Bit Reversal Made Clear..........ccooviieniiieiieee e
Table5: Total execution tIMESfOr.........c.evviiiieiiie e

Table 6: Execution times (in seconds) for the dyadic frequency domain

operations vs. image size on the Macintosh lICiccccveeeeennneen.

Table B1: FHT execution times in milliseconds vs. sequence length

and Macintosh COMPULEr tYPEvvvveieciiiee e

Table B2: Utility routine execution times in milliseconds

vs. image sizefor the Macintosh 1lccceeeviiiieciiiiec e

Table B3: Utility routine execution times in milliseconds

vs. image size for the Macintosh 11Cioeeeviiieeeeiiiiee e

LI1ST OF ILLUSTRATIONS

Figure 1: FFT BULEITIY ..o 17
Figure 2: Butterfly flow diagram for a16 point FFTcccooviiieeiiiiiee e, 18
Figure 3: Structured Butterfly Flow Diagram for a16 point FHT 20
Figure 4: FHT Retrograde Indexed Twiddle Factor Multiplication.................... 21
Figure 5: FHT Execution times for 68000-based Macintosh computers............. 33
Figure 6: FHT Execution times for 68020- and

68030-based Macintosh COMPULENS.........ccccvviiieeeiiiiiee e 33
Figure 7a & b: Block Swap EXamMpPIe.........ccocuviieiiiiiie e 38
Figure 8: H(k1,k2) array traversal for power spectrum calculation 41
Figure 9: Percent of Total Power Spectrum Execution Time

vs. Image Size for the Macintosh I COMPULErcccvveeeivciieeeeccinen. 47
Figure 10: Percent of Total Power Spectrum Execution Time

vs. Image Size for the Macintosh l1ci computer............cccceeeeiciveeennn, 47

Figure 11 Title bars for Space and Frequency Domain Windows..................... 52
Figure 12: Spatial Filtering Example..........coooieieiiiiie e 59
Figure 13: Deconvolution EXamplecoociiieiiiiiie e 61
Figure 14: T4 Bacteriophage Tail Structure Enhancementcccccveeeennnen. 63
Figure 15: Myofibril SETUCLUFE........coooiiiee e 65
Figure 16: Correlation Example.........cccoveeiiiiiiiii e 67
Figure CL: StaCk Frame.........coooiiiiee et 89
Figure D1: BREV resource formatcooevcieeeeiiiieee e 91
Figure D2: TWID resource formatcoooiueeeeiiiieee e 92

For
Hanndli

vii

0. INTRODUCTION

Since its development in 1807 by Baron Jean-Baptiste-Joseph Fourier, the Fourier transform
has seen countless applications ranging from Fourier’s origina studies in heat conduction to
modern molecular modeling [1]. While it provided a powerful analytical tool, however,
numerical caculation of the Fourier transform remained too computation intensive for most
applications until 1965. In that year, James Cooley and John Tukey introduced an efficient algo-
rithm for the calculation of Fourier transforms known as the Fast Fourier Transform or FFT1 [2].
Because it offers a vast savings in execution time over direct Fourier transform calculation?, the
FFT has revolutionized many facets of scientific analysis and earned a place among the greatest
numerica methods developed in the 20th century [4].

As a prism decomposes white light into a spectrum of its congtituent colors, the Fourier
transform decomposes a time- or space-varying signal into a spectrum of its constituent
frequencies. The ear continuously performs a Fourier transform by converting complex time-
varying sound waves into a series of volumes at distinct pitches [1]. The spectrum produced by
the Fourier transform process is a complete and complementary representation of the original
signal; the utility of this representation lies both in the alternative perspective it provides and in
the fact that some operations are more easily performed on the spectrum than on the original
signal.

While the FFT expedites Fourier transform calculations, it still remains a computation inten-
gve task. Large FFT calculations, such as the two dimensional FFTs often used in image pro-
cessing applications, require so much computation that they are most often run on powerful
mainframes or specialized hardware. For example, engineers at Dartmouth’s Thayer School of
Engineering found that instead of waiting for a two dimensional FFT calculation to complete on

their Sun 3/160, it was quicker to upload the image to a powerful Convex computer, perform the

1Since that time it has been found that the foundations for the FFT were laid in 1942 by Danielson & Lanczos [3],
who in turn based their work on that of Runge [4]. Since they were the first to implement this technique on a
digital computer, however, Cooley and Tukey are still considered the fathers of the FFT.

2The FFT requires O(NlogoN) operations, while direct computation requires O(N2) operations.

2

FFT calculation there, and download the result3. Those who don’t have access to such resources
must show some patience: Recent research using a 68000 based VICOM Digital Image
Processor required scientists to wait 30 minutes for a 512x512 point FFT calculation to complete
[5]. Because most people lack either the computational resources required for rapid two
dimensional FFT calculations or the patience necessary when such resources are absent, such
calculations remain atool of the privileged few.

Microprocessors have developed to the point, however, where many persona computers
boast more computational power than yesteryear's mainframes. FFT agorithms have also
evolved to provide the same functionality for a significantly reduced number of operations. This
work describes how one such algorithm, the fast Hartley transform (FHT), was carefully coded
and optimized to run on the 68000 family of microprocessors, resulting in code that can compute
the power spectrum of a 512x512 point FFT in less than 30 seconds on a Macintosh llci. To
make this fast FFT capability available to every Macintosh Il owner, the code was incorporated
into a popular public domain image processing program for the Macintosh Il. Careful attention
was pad to the user interface extensions made, resulting in a program that provides FFT

capabilities of both speed and accessibility unprecedented on a personal computer.

This paper begins by discussing the early decisions that shaped the development of this pro-
ject. The Fourier and Hartley transforms are then described in more detail, and the fast Hartley
transform algorithm isintroduced. Next, the details of implementation that speed the FHT on the
68000 are related as are the details of the utility routines, each followed in turn with execution
timing results. The next section elaborates on the incorporation of an FFT capability into the
Image program and the feature set these extensions provide. Finaly, sample images are
enhanced to illustrate the power of Fourier transform techniques and the way in which Image

brings this capability to the user. The paper concludes with suggestions for future development.

3Eric Hansen, private communication.

1. THE FIRST DECISIONS

Several decisions made early on in the course of this project fundamentally shaped its devel-
opment and outcome. The first was to implement the transform code produced in Image, an ex-
isting image processing program for the Macintosh |1. Because it promised to be most efficient,
integer computation was chosen over floating point computation. Finally, an appropriate trans-
form algorithm had to be chosen. Because of their importance, al three of these decisions are

described in detail here.

1.1 Choosing an Existing Platform: Thelmage Program

Image is a full featured image processing program for the Macintosh Il produced by Wayne
Rasband at the National Institutes of Health. In hiswords, Image can [6]

acquire, display, edit, enhance, analyze, print, and animate images. It reads and writes TIFF, PICT, and
MacPaint files, providing compatibility with many other Macintosh applications, including programs for
scanning, processing, editing, publishing, and analyzing images. It supports many standard image
processing functions, including histogram equalization, contrast enhancement, density profiling,
smoothing, sharpening, edge detection, and noise reduction. Spatial convolutions, with user defined
kernels up to 63x63, are also supported.

This is only the beginning of along list of Image’s capabilities. What makes Image even more
attractive, however, is that it is distributed with its source code (in THINK Pascal) in the public
domain. Anyone can download the latest version of Image, its documentation and source code
from anumber of publicly accessible computers and bulletin board services for free?.

Because of Image's singular performance/price ratio in a market otherwise dominated by
pricey packages, it has gained awide following. Image is also popular because users can modify
the program to fit their individual needs. Severa of these modifications have made their way
back to the National Institutes of Health for permanent incorporation into the Image program.
The FFT extensions to Image described here are one such example.

Despite dl its virtues, Image did not originaly provide the ability to take the Fourier
transform of an image. Nor, because of the FFT’s reputation of being everything but fast on

personal computers, was this modification forthcoming. By dready providing so much

4The Image documentation [6] includes alist of these sources.

4

functionality, however, Image provided an idea platform on which to build FFT code. Any
extension to Image automatically has the benefit of its support; because Image was aready a
‘complete’ program, all effort could be focused on the FFT extensions with the assurance that
thelir utility would be enhanced by their environment.

The success of this endeavor was by no means certain at the outset. Consequently, a further
benefit of using Image as a development platform was not anticipated: its users. Already familiar
with Image’s environment, Image users have taken quickly to the FFT extensions and are eager

to use the FFT source code soon to be released into the public domain.

1.2 Choosing a Number System

Among personal computers, the Macintosh 1l is unique in that every unit comes equipped
with a floating point coprocessor®. The MC68881 and MC68882 floating point units (FPUS)
have specialized hardware that speed some floating point operations by over two orders of
magnitudes. Since the fast Fourier transform is commonly known to involve many floating point
computations, one is tempted to exploit the Macintosh |1’s FPU to accelerate FFT calculations.
It may therefore come as a surprise to some that the quickest FFT calculations actualy eliminate
use of the FPU.

While the FPU can compute logarithms, transcendentals and other complex functions much
more quickly than the software routines otherwise used by the host processor, none of these
complex operations are needed to compute the FFT?. The basic routines, such as multiplication
and addition, which make up the bulk of the transform calculation, actually take longer to
compute on the FPU than on the host processor because the FPU operates on 80 bit floating
point numbers while the host processor operates on 16 and 32 bit integers. Numbers moved

to/from the FPU also undergo automatic conversion to/from its 80 bit format, making CPU to

50n IBM PCs and PC-compatibles, a floating point unit (FPU) is typically offered as an option. The Macintosh 1
comes with a 68020/68881 CPU/FPU processor set, while the Macintosh 1x, llcx, Ilci and 11fx come with
68030/68882 processor sets.

6Transcendental operations are accelerated most, since they are otherwise computed in software.

"Actually, the transcendental functions sine and cosine are needed to compute the Fourier transform, but usually
their values are stored in alookup table to speed execution.

5
FPU data transfers even dower that transfers between the CPU and main memory. Finaly, a
single precision real number occupies twice as much memory as a 16 bit integer.

To speed the execution of the transform calculation and minimize its memory demands, we
therefore chose to perform all calculations using integer arithmetic. Because integers have avery
limited dynamic range in comparison to real numbers, special care had to be taken to preserve as
much information during the transform computation as possible. The details of these techniques

are described under ‘Making the FHT Accurate’, below.

1.3 Choosing An Algorithm

In the last twenty five years, an abundance of new algorithms for efficient calculation of the
Fourier transform have been developed and it continues to be an area of active research. Which
algorithm is best? The answer to this question depends on the application at hand.

Choosing the Macintosh platform placed several constraints on the code to be developed.
First, while a Macintosh |1 can hold 32 megabytes of RAM on the motherboard, most Macintosh
II’'s have somewhat less memory and Image was designed for a minimum configuration of 2
megabytes of RAM. Since RAM promised to be a critical constraint, it was important that the
caculation require a minimum of RAM. The fact that the Cooley-Tukey FFT agorithm is
computed in place (the transform output is computed and stored in the same memory used for
data input) made it and other agorithms with this characteristic particularly appealing. The
Winograd Fourier transform [7], athough very efficient in the number of multiplications it
requires, is not computed in place. This, and the fact that fixed point implementations of the
Winograd transform have inferior error characteristics [8], eliminated it from consideration here.

Although the ssimplest and most common way to compute the two dimensional Fourier trans-
form of amatrix isto apply aone dimensional Fourier transform to each of the rows and columns
of the matrix, this technique is not optimal. Vector radix transform agorithms exploit the multi-
dimensiondlity of a given data set to reduce the number of operations required to compute its
Fourier transform. For example, in two dimensions a vector radix-4 Fourier transform algorithm

requires less than half of the multiplications required by the row-column technique [9,10]. Since

6

vector radix agorithms aso use in place calculation, their efficiency singled them out for imple-
mentation and many days were spent studying and coding this technique.

Unfortunately, a small number of multiplications aone does not a fast transform make [11].
High level language implementations of the vector radix agorithms were quite complex in
comparison to their one dimensional counterparts; while the number of multiplications required
for transform computation were reduced, the operations required for address computation
increased resulting in an overal performance only moderately better than for the row-column
technigue. While the address computations could probably have been optimized for better
performance, another characteristic of the vector radix technique caused it to fall out of favor.

The vector radix technique's efficiency arises from the fact that it operates on the transform
datain large blocks, reducing both the number of loop iterations and the total operation count in-
volved in the computation. Unfortunately, not al of the variables in a such block can fit in the
68000’ s register set, forcing them to be stored in main memory instead. Since going ‘off chip’ to
fetch a number from memory takes about 5 times longer than fetching a number directly from a
register, performance of the vector radix techniqgue was compromised by time consuming
memory movement operations.

In seeking a quantitative metric by which to evaluate the performance of various Fourier
transform algorithms, the scientific community has focused on the number of arithmetic
operations required by a particular agorithm. Multiplication and divison were invariably
implemented in microcode on older processors (even the 68000 is built this way) making these
iterative instructions the slowest in the instruction set. For this reason, the performance of early
fast Fourier transform implementations was often truly ‘multiplication bound’ and an agorithm’s
performance correlated well with its arithmetic operation count.

As the density of semiconductor devices increases, however, operations like multiplication
are no longer constrained to exist in microcode. Many newer processors have dedicated parallel
multiplication units, reducing the time required for this instruction considerably. Even in the
68000 family of microprocessors, the execution time for a 16 bit multiplication has been reduced
from 70 cycles on the 68000 to 28 on the 68030. At this speed, multiplication no longer stands

out as the slow poke of the instruction set, but executes in a time comparable to many other

7

instructions. Arithmetic operation count, although <till widely used as a basis for algorithm
comparison, is therefore no longer as useful a metric in the evaluation of algorithm performance.
For example, a 68000 implementation of Despain’s algorithm [12], which completely eliminates
al multiplications from the transform computation, was found to be limited by address
calculations [11]. At this point it became apparent that the speed of the code developed would
likely depend as much on the details of its implementation as on the algorithm used.

While this subdued the search for the ultimate Fourier transform agorithm, it did not
eliminate the need to find an appropriate algorithm for incorporation into Image. Thus far it had
become clear that simple, compact algorithms were best suited for implementation on the 68000,

yet even this subset of algorithmsis quite large.

The Final Choice: The Fast Hartley Transform

Images are inherently real valued, yet most general Fourier transform algorithms accept com-
plex valued input and return complex valued output. The generality of these algorithms is also
their weakness, for in the process of transforming rea data they perform twice as many
operations (arithmetic, address and transfer) as is necessary. Since the Fourier transform is
commonly used in the anaysis of red signas, speciad versons of amost every transform
algorithm have been developed to deal more efficiently with real data [13,14]. Unfortunately,
when it comes to inverse transformation, another specia version of the agorithm is required to
efficiently transform the complex output back into the real sequence [15].

The Hartley transform [16] distinguishes itself from its close cousin, the Fourier transform,
by being real valued; it produces real output from real input. Even so, it provides the same phase
and amplitude information about the data as the Fourier transform. The Hartley transform may
also be computed using a ‘fast’ algorithm which requires O(NlogzoN) operations. Finally, the fast
Hartley transform (FHT) is twice as fast as a complex valued FFT, requiring virtualy the same
number of operations as the real valued FFT algorithms[17,18].

In addition to its speed, the FHT provided two advantages over the FFT counterparts in the
current application. First, since the Hartley transform is real valued, it could be efficiently stored

in the limited memory available. While the symmetry of the complex output of real valued FFT

8
routines can be exploited to produce comparably dense storage, this requires some extra
computation. Second, the Hartley transform is so symmetric that the forward and inverse
transforms differ only by a multiplicative constant. This obviated the need to write two separate
routines for transformation and inverse transformation.

While further research on available algorithms might have produced even better candidates
for implementation, the Hartley transform’s compactness, smplicity and symmetry made it a

sound starting point.

2. MATHEMATICAL FOUNDATIONS

Having narrowed the scope of interest down to the Hartley transform, more mathematical de-
tails can now be given. To provide a standard against which to compare the Hartley transform,

we introduce it in parale with the Fourier transform.

2.1 TheFourier and Hartley Transforms

A physical process can be described ether in the time domain by some function V (t) or in the
frequency domain by some (generally complex) function F(f). Both descriptions contain the
same information and can therefore be thought of as different representations of the same
function [14]. To produce one representation of the function from the other, one uses the

Fourier transform and the inverse Fourier transforng:

F(f) =f V(t) e28iftdt

V() =f F(f) e?Si1tdf

(1)
The Hartley transform and itsinverse are very similar to their Fourier counterparts [15]:
H(f) = J[V(t) cas(25 ft) dt
V(t) = J[H(f) cas(25 ft) df
) 2

where the cas function is defined

8The Fourier transform of V(t) existsif V(t) it is bounded and absolutely integrable [4].

10
cas(t) © cos(t) + sin(t). 3

Comparing the Fourier and Hartley transform pairs, two distinctions are immediately evident.
First, the Hartley transform of area valued function is itself real valued. Second, there is abso-
lutely no difference between the forward and inverse Hartley transform. These two characteris-
tics, combined with the fact that the Fourier transform of a rea function can be easily derived
from its Hartley transform, make the Hartley transform an efficient and convenient vehicle for
Fourier transform calculation, as will be shown below.

The relationship between the Fourier and Hartley transforms hinges upon symmetry condi-

tions. Splitting the Hartley transform H(f) into its even and odd components, E(f) and O(f), we

obtain [15]
E(f) =wzf V() cos(25 ft) dt
oy = HOHED f VO sin(zs o o

(4)
From these relations, we see that the Fourier transform can be obtained from the Hartley trans-

form by forming the difference E(f) - iO(f):

E(f) - iO(f) =f V(t)(cos 28 ft - i sin 28 ft) dt

= f V(1) ei287t dt

= F(f) (5)
Conversaly, the Hartley transform can be obtained from the Fourier transform by computing
H(f) = Frea(f) - Fimaginary(f)- (6)

The real and imaginary parts of a signa’s Fourier transform are often of less interest than

thelr derivates: The signal’s amplitude, phase and power spectrum. Using the definitions of

11

these quantities and the equations (4) and (5), these values can be computed directly from both

the Fourier and Hartley transforms as follows:

Function Fourier Calculation Hartley Calculation
Power Spectrum [Fr()12 + [Fi(1? [H(H)]2 : [H(-1)12
Amplitude P12 + [Fi(N12 \HAZ + [HEHI2
Phase &ilhy HEDL, 8
arCtangr(f)ﬁ arCtar{ H(f) v 8

Table 1: Power Spectrum, Magnitude and Phase as calculated from
the Fourier and Hartley transforms [15].

As Table 1 clearly shows, the calculations involved in recovering the power spectrum, amplitude
and phase of a signal from its Fourier or Hartley transform are very similar and demand the same
number of operations.

The similarity between the two transforms extends to the theorems commonly used in Fourier
analysis. For virtually all Fourier transform theorems, there is a corresponding Hartley transform
theorem. Both transforms are linear and therefore have Addition theorems (see Table 2). The
Similarity theorem, which states that contraction of a signal’s space domain representation corre-
sponds to a dilation of its it frequency domain representation, also exists for the Hartley trans-
form. Thistrend holds for the important Convolution and Correlation theorems as well, enabling

these operations to be directly computed from the Hartley transform.

12

Theorem V(1) F(f) H(f)

Addition V(1) + V(1) Fi(f) + FaAf) Hi(f) + Hu(f)

Similarity V(UT) [TIF(TS) [TIH(TS)

Shift V(t-T) e2ITINE(f) sin(2Of)H(-f) +
cos(20)H(f)

Reversal V(-) F(-1) H(-1)

Comaluion - OTVAD - RIDRED 3 (HDHA - i DHA)
+Hy(f)HaA(-f) + Ha(-F)HAf)]

Correlation V4(t) % Vo(t) F(OIFANT

Z [H(AHAP + i AHAP)
+ Hy(f)H2(-f) - Hi(-F)HA(f)]

% Denotes Correlation
Table 2: Theorems for the Fourier and Hartley transforms [15].
The strong similarity between the Hartley and Fourier transforms enables them to be inter-
changed in most situations. Aswe will see, making this exchange is worthwhile when computing

the Fourier transform of real sequences.

2.2 TheDiscrete Fourier & Hartley Transform

While people tend to think in terms of continuous variables, it is usually necessary to use dis-
crete variables when making measurements and performing computations. Computing the

Fourier transform is no exception, so a discrete form of the Fourier transform and its inverse is

needed:
N-1
F(k) - e V(n) e—2§ikn/N
n=0
N-1
V(n) = -[ilr e F(k) e28ikn/N
n

-° (7)
Here, our continuous function of time, V(t), has been sampled at N equispaced points producing
a discrete sequence of N numbers, V(n). The Fourier transform, F(k), has likewise become adis-

crete sequence consisting of N complex numbers®. The discrete Fourier transform (DFT) is very

9In accordance with popular convention, we denote these indices as ranging from 0 to N-1, with the result that
positive frequencies correspond to k in the range [1..N/2-1], while negative frequencies correspond to the ‘ second
half of the array’ or k in [N/2+1..N-1]. Note also that k = 0 is the ‘DC’ or zero frequency component of the

13

similar to is continuous counterpart, except for the factor of 1/N in the inverse transform. This
factor is as often associated with the the forward transform as its inverse; while its location is not
critical1?, it is necessary to restore the proper scale to a sequence that has been transformed and
then inverse transformed [15].
Using the same discrete sequence, V(n), the discrete Hartley transform (DHT) and its inverse
become:
N-1

H(k) = e V(n) cas(2Skn/N)
n=0

N-1
V(n) = Ni e H(k) cas(28kn/N)
n

- (8)
Except for afactor of 1/N, the DHT and itsinverse are again identical. The relation between the
DFT and DHT is also analogous to the continuous case; the DFT may be obtained from the DHT

using
F(k) = E(k) - iO(k) 9
where
E(K) = H (k) +2H (N-k)
oK) = H (k) - H(N-k)
2 (10)

Conversaly, the DHT can be computed from the DFT using

H (k) = F(k) - Fi(k) (1)
as before. The direct analogy between the discrete and continuous cases aso extends to the

computations of amplitude, phase and power spectra, the only difference being that H(-f) is

replaced with H(N-k)11. Likewise, the discrete theorems are very similar, except in two

spectrum, while k = N/2 is at once the maximum positive and negative frequency in the spectrum (these are equa
due to the spectrum’s periodicity).

10The transform pair can even be made symmetrical by multiplying both sums by 1/\/N .

11which arises from letting k range from 0 to N-1, and not from -N/2 to N/2.

14
important cases which underscore the difference between the continuous and discrete transforms:
The Convolution and Correlation theorems.

Discrete sampling of a signal can be modeled as multiplying the signal by a sequence of delta
functions spaced some sampling interval, [T, apart. The transform of this delta function se-
guence is itself a delta function sequence, spaced 1/[T apart in the frequency domain. Since
multiplication in the time domain is equivaent convolution in the frequency domain, the sampling
of the signal results in the periodic reproduction of its transform with a /[T spacing in the
frequency domain!2, Likewise, the sampling or discretization of the transform results in the
signal being periodically extended in the space domain. Consequently the signal, its DFT and its
DHT are al periodic sequences with period N, as equations (7) and (8) will verify.

The discrete convolution and correlation theorems therefore describe cyclic convolution and
cyclic correlation: In contrast to the continuous case, the shift and multiply operation
characterizing convolution and correlation produces overlap between the sasmpled signal and its

periodic extension. Consequently, the cyclic convolution and cyclic correlation are aso periodic

functionst3,
Theorem V(n) F(k) H(K)
Addition V4(n) + V(n) F1(k) + Fx(K) Hy(k) + Hy(K)
Shift V(n-T) e20ITKINE(K) cos(2Tk/NYH(K) - sin(2Tk/N)H(N-
K)
Reversa V(-n) F(N-k) H(N-K)

Convolution Vi(n) OVy(n) NFy(K)Fo(K) %N[Hl(k)Hz(k)-Hl(N-k>Hz(N-k)

+ Hy(K)H2(N-K) + Hy(N-K)H(K)]

Correlation V1(n)9V,(n) NF(K)[F(K)] % N[Hy(K)H(K) + Hy(-K)Ho(N-K)

+ Hy(K)Ha(N-K) - Hy(N-K)H(K)]

@ Denotes cyclic convolution.
€ Denotes cyclic correlation.

Table 3: Theorems for the DFT and DHT4[15].

12T develop a graphical understanding of this, read E. O. Brigham’s ‘ Graphical Development of the Discrete
Fourier Transform’ in his fine book, The Fast Fourier Transform [4].

13|f one wishes to compute a normal, non-cyclic convolution or correlation, this overlap effect can be avoided by
padding the data with zeros, as is described in Appendix A

14For the discrete Similarity theorem, see Bracewel| [15].

15

Sampling aso limits the accuracy with which a DFT models the continuous Fourier transform
sought. Because of the transform’s duplication every 1/[T cycles, it is necessary that the trans-
form go to zero for frequencies exceeding 1/2(T (the Nyquist Frequency). Frequencies higher
than this are aliased into the interval £1/2(T. Furthermore, since sequences always have finite
length, their transforms are convolved with with the transform of their windowing function, de-
creasing the spectral resolution in an effect known as leakage [4]. Once aware of these

limitations of the DFT and DHT, however, one can minimize their effects.

The Two Dimensional DFT and Two Dimensional DHT

Until now we have considered only one dimensional signals and sequences in the time do-
main. Images are two dimensiona space domain objects. The only difference between the two
domains is that the tempora causality of the time domain is absent in the space domain; every
pixel of an image can be accessed smultaneously, whereas atime series is inherently sequential.

While white light’s rainbow colored spectrum is an easily visualized manifestation of Fourier
transformation in one dimension, how does one visualize a two dimensional Fourier transform?
As a diffraction pattern; if an object is considered to be a two dimensional aperture function,
A(y,2), its far-field Fraunhofer diffraction pattern is the Fourier transform of A(y,z) [19]. If this
description does little for your intuition, then using the FFT extensions to Image will; there is no
better way to develop this intuition than by direct experience.

The two dimensional DFT and its inverse are expressed:

N2-1 Nz-1

F(k1,kp) = o e V(n1,ny) exp[25|(

n=0n;=0

k]_l’l]_ kznz)]
N1 N2

N2-1 N;-1

Vinng) =—Lt—e o F(kyky) exp[zsl(* L kznz)]
N1N2n2:0 ni=0 N1 N2 (12)

Because of the exp function’s separability (eAeB = e(A+B)), the two dimensiona (2D) DFT can be

computed as the DFT of one dimensional DFTSs:

16

N2-1 | Nz-1
F(ki, ko) = e |: ° V(ny,n3) eXp[-Zéi(*_kli.lnl.):l] exp[-zéi(klflﬂ)]

n=0Ln;=0 1 2
No-1 N;-1 K K
V(n,ny) =—-e |L1-e F(ki ko) exp[Zéi(1”1)] exp[2§i(2”2)]
N2, o[N1, -0 N1 N2

(13)
This means that the 2D DFT of an image, for example, can be computed by first transforming
each of the rows of the image and then transforming each of the columns of the image or vice
versa.

The 2D DHT is expressed

N2-1 Ni-1

Flkiko)= o o Vinyng) cafs(S . Koz
n,=0n;=0 1 2
Nz2-1 N;-1 " ‘
V(ng,ny) = 1 ° ° F(kq,ky) € Zé({l—nl+ znz)
N1N2n2=0n1:0 N, N,

(14)

As in the one dimensional case, the forward and inverse transforms are identical but for a multi-
plicative factor. Unfortunately, however, the cas function is not separable and therefore the 2D
DHT cannot be computed by simply applying a 1D DHT to the rows and columns of the image
matrix. If a row-column DHT is computed, however, the two dimensional DHT can be
recovered from the result, as is described under ‘Row Column HT to Two Dimensional HT

Conversion’ below.

2.3TheFast Fourier Transform

Because computing the DFT of an N point sequence requires N summations each involving
N operations, the total computation requires O(N2) operations. Writing out the entire
computation by hand will show, however, that many of these operations are redundant and can
be eliminated. Using Danielson and Lanczos [3] observation that an N point DFT can be
expressed as the summation of two N/2 point DFTSs, these redundancies can be eliminated as we

now show. Adopting the conventional definition

17
W o e—2§i/N, (15)
where W is commonly referred to as a twiddle factor1s, the DFT can be divided in two as fol-

lows:

N-1
°

F(k) = V(n)wnk
n=0
N/2-1 N/2 -1
= e V2n)WEMKk + e Vv(2n+1)WEn+k
n=0 n=0
N/2-1 N/2-1
= e V2nWEMDK + Wk o V(2n+1)WENkK
n=0 n=0

= Feven(k) + WkFodd(k) (16)

Feven(K) is the N/2 point DFT of the even elements of V(n), while Fogg(K) is the N/2 point DFT
of the odd elements of V(n). The second N/2 points of the transform are likewise computed
using

F(k+ N/2) =Fgenlk + N/2) + WKN2E (K + N/2)
= Feven(k) - WkFodd(k) (17)

since Feven and Fogq both have period N/2 and WN/2 = -1,

While using this division reduces the total computation involved by amost afactor of 2, there
IS no reason to stop here. The beauty of the Danielson Lanczos Lemma is that it can be recur-
sively applied to sub-sequences of length N/4, N/8, etc. [14]. When this technique is used on
sequences an integer power of two in length, the division process can proceed logoN times, pro-
ducing logoN stages each of which require O(N) operations. The resulting total operation count
of O(NlogoN) provides a vast improvement over O(N2) for large N, making this the Fast Fourier
Transformor FFT.

The fundamental computational unit of the FFT is a two point transform, called a butterfly

because of its appearance:

15The WK are the N complex roots of unity and therefore lie on the unit circle in the complex plane.

18

Figure 1: FFT Butterfly. The dashed line indicates negation.

Two input data points, A & B, produce two output points after one complex twiddle factor mul-
tiplication and two complex additions or a total of 4 real multiplications and 5 real additions.
Since only two elements are accessed per butterfly, the same storage can be used for input and
output, and the computation is performed in place. In the first stage of the FFT computation,
N/2 such butterflies are applied to the input sequence producing N/2 two point transforms. The
second and subsequent stages combine butterflies into groups of 2, 4, 8, etc. to perform longer
transforms. Thisis depicted herein a butterfly flow diagram for a 16 point FFT:
V> v am— — ——
V2R \N/ A

zi 2; N\XX/ N\\\/7Ao
V(4) w’ O Q‘ \W\V/// F(2)
") w2/ X NNV
o) w*/ /) AN L

WO

V(7) - s e m e e S YXXXXXXX F(14)

v(8) N W Q‘é‘é‘éﬂ F(1)
V(9) \\/ / W2 é’é‘%‘ F(9)
V(10) — el F(5)
V(11) ~AT W F(13)
W
V(12) « F(3)
V(13) M F(11)
V(14) — F(7)
V(15) et F(15)

Figure 2: Butterfly flow diagram for a 16 point FFT.

The high degree of regularity in the butterfly diagram makes its implementation in code very

compact. An FFT routine consists of three small loops, the outermost loop determines the stage

19
and repeats logoN times, while the inner two loops control the number of butterflies in a group
and the number of groups!®, together performing N/2 two point butterflies.

By repeatedly decimating the input into even and odd sub-sequences, the radix 2 FFT returns
a permutation of the desired transform. To restore sequential ordering, the elements whose
indices bit-wise mirror one another are swapped (e.g. the element at index 0011 (3) is swapped
with the element at index 1100 (12))17. This bit reversal operation, described under ‘Details of
the Utility Routines' below, may be performed before or after the transform.

The basic, radix-2 FFT agorithm is very symmetrical, but it accepts general complex input
when all that we need here is the ability to transform real sequences. The Fourier transform of a
real sequence has conjugate symmetry (the real part of the transform is even while the imaginary
part is odd) which can be exploited to reduce the number of computations in an FFT by one half

[14].

24 TheFast Hartley Transform

Like the DFT, the DHT summation can be split in two to reduce total operation count.
Expressing equation (9) as

H(k) + iH(N-k)

Fl) = 141 (18)

and substituting this expression into equation (16), we obtain

iH(N-K) = iHAL k iHo AL
H (k) + TH(N-k) = [He(k) + iH (- k)] + WHHo(k) + 1Ho(5--K)] (19)

where Hg(K) is the N/2 point DHT of the even indexed elements of H(k) and Hgy(K) is the N/2
point DHT of the odd indexed elements of H(k)18. Equating real [@nd imaginary parts gives us
the Hartley analog of equations (16) and (17) [21]:

16This terminology of stages, group size and number of groups is carried through to the source code level.

17For higher radix algorithms, the indices are digit reversed in the radix used; for radix 4 permutations, the array
elements whose base-four indices mirror one another are swapped. The general radix permutation is therefore
described as digit-reversal [20].

18Not to be confused with E(k) and O(k), the even and odd parts of H(K).

20

H(K) = He(k) + [Ho(k)cos(25Kk/N) + Ho((N/2) - K)sin(25 k/N)]
H(k + N/2) = He(k) - [Ho(k)cos(28k/N) + Ho((N/2) - k)sin(25k/N)] (20)

While k ranges from 0 to N-1, the indices for the even and odd sub-transforms are evaluated
modulo N/2 [18]. Like the FFT, this decomposition can be recursively applied until length two
transforms are obtained. Because the even-odd decimation is identical to that of the FFT, the bit

reversal permutation is also the same.

Retrograde Indexing
In place computation is desired, yet equation (20) shows that both the kth element and the
N/2-k)th element of an N/2 point DHT must be accessed to compute one output point.
(p p put p
Consequently, four elements must be processed at once to avoid overwriting an element that will
be needed later. This is a manifestation of the FHT's retrograde indexing because the index,
N/2-k, of the element multiplied by the sine term decreases with increasing k while the indices for
the other elements increase with k. Thisis most easily visualized in the structured butterfly flow
diagram for the FHT [22]:
V(0) H(0)
wp — % M i\ /? o
v X XX/
V(3) -2 ---

v(4)
5 5 T3

V(5)

V(6)
V(7)
V(8)

<
DS¢
W S
i — 5
<
DS¢

3] -

T4

V(12)
V(13)
V(14)
V(15)

Figure 3: Structured Butterfly Flow Diagram for a 16 point FHT.

21

In Figure 3, butterflies operate in the same way as they do for the FFT. The absence of twiddle
factors in the first stage is no mistake; the sine and cosine terms are either 1, 0, or -1 in these
stages and are never both ssimultaneously non-zero.

The retrograde indexing becomes apparent in the third and subsequent stages, where the
twiddle factor multiplication takes place in the boxes labeled T3 and T4. The data paths and

twiddle factor multiplications inside these boxes are shown here:

! (
T3 T4

Figure 4: FHT Retrograde Indexed Twiddle Factor Multiplication.

In Figure 4, units T3 and T4 show how the twiddle factor multiplication takes place. The Ck and
Sk denote the terms cos(2[k/N) and sin(2[k/N) respectively. The retrograde indexing of the

sine terms can easily be seen to produce the requirement of two input points for each output
point. To attain in place computation, two butterflies must therefore performed at once. By

exploiting the symmetries

(21)
the total number of multiplications for the 4 point dual-butterfly is reduced to atotal of four real
multiplications and six real additions [18]. Since two complex FFT butterflies require 8 real mul-

tiplications and 10 real additions, the operation count is reduced by amost one half.

22

Operation count of the FHT can be reduced yet further. Since the first two stages involve no
multiplications, they can be computed separately. To minimize the number of memory accesses
in the first two stages, they can be collapsed into one stage made up of N/4 radix 4 butterflies.
The first butterfly of each group starting with the third stage likewise involves no multiplications
and can be treated separately.

Because of the similarity between the four twiddle factor multiplications necessary to
compute a dual-butterfly and a general complex multiplication, a trick to reduce the operation

count in the latter computation can also be exploited. The product
(a+ ib)(c+id) = (ac- bd) + i(ad + bc) = Re + ilm (22)

which requires 4 multiplies and 3 adds can be computed with 3 multiplies and 5 adds by using a

temporary variable T2

T=(a-b)d
Re=T + a(c-d)
Im=T + b(c + d) (23)

Further reductions in operation count can be achieved by exploiting the symmetries of the
twiddle factors®, but since they occur only under specific conditions, continuously checking for

these conditions may outweigh the benefits of their ‘ optimization.’

19Because an ADD instruction runs between 7 and 18 times faster than a MUL instruction on the 680x0
processors, thisis a worthwhile optimization.

20For example, when the sine and cosine terms are equal, a multiplication can be avoided.

3. DETAILSOF THE FHT ALGORITHM

The current implementation of the FHT agorithm evolved over more than six months. The
earliest versions had the same basic structure as the fina ones, but many changes were made that

significantly enhanced both the speed and accuracy of the final implementation.

3.1 Makingthe FHT Fast

In making the FHT implementation execute as fast as possible, several basic tenets of 68000
assembly language programming were observed. In addition, there were aspects of the
Macintosh system software that had to be considered to speed the code on this system. Finally,

common sense was used in evaluating implementation tradeoffs. These are all discussed below.

Use The Registers To Minimize Memory Access

The designers of the 68000 were very generous is giving the programmer sixteen 32 bit regis-
ters to work with. Eight of these are genera purpose data registers, while the other 8 are
address registers. Since register access is about 5 times faster than memory access, the registers
are to be exploited to their fullest, while memory is be accessed only when absolutely necessary.
This includes minimizing the use of the memory-based stack and loca variables, which are the
second most convenient place for temporary data storage. To squeeze the most functionality out
of the 8 data registers, they can be treated as sixteen 16 hit registers; the SWAP instruction
swaps the high and low words of a given data register, allowing one to pack two numbersin each
register. While they do not support all data operations, address registers can also be used for
temporary data storage as well.

To further minimize memory accesses, data should aways be fetched from memory in the
largest possible denomination. For example, two word accesses require a minimum of 32 cycles
on the 68000, while one long word access requires only 20 cycles. Similarly, it is more efficient
to fetch aword (and process the bytes in the registers) than to fetch 2 bytes?l. This ssimple opti-

mization has been exploited whenever possible.

210nly the 68020 and 68030 allow byte access at an odd address.

23

24

Make the Code Small

The processor spends a non-negligible part of its time simply fetching the instructions to be
executed from memory. All ese being equal, a 10 byte implementation of function X will be
faster than a 12 byte implementation. This may sound simple enough, but there are at least two
other important considerations to be made here.

First, the 68020 and 68030 have 256-byte instruction caches. If an entire routine, or at least
its innermost loop, can be made small enough to fit in this cache, it will execute much faster since
the processor will not need to go off chip to fetch instructions. The 68040's two 4K caches
(data and instructions) would greatly enhance the performance of this FHT routine since al 938
bytes of the code as well as most of the twiddle factor lookup table (described below) could fit
into these caches.

The are, however, limitsto the ‘small is beautiful’ coding philosophy. Like any other author,
a programmer must also take into consideration his readership. If the code oneiswriting isto be
burned into a ROM and never seen again, every trick available for making that code small and
fast should be employed. Code like this that has undergone severe ‘human compilation’ can be
very difficult to read, however. Because it isto be distributed in the public domain, an effort has

been made to maintain the code’ s readability without making too many sacrifices in compactness.

Avoid Slow Instructions

In every microprocessor’s users manual, a section is devoted to instruction execution timing.
Perusal of the 68000's execution timing section quickly shows that while most instructions re-
quire less than 20 cycles to execute, the Multiply and Divide instructions take about 70 and 150
cycles, respectively?2, These execution times are long enough that the use of these instructions
inside loops should be avoided or at least minimized. For example, multiplication or division by
powers of two should aways be done using left and right arithmetic shift operations. If a number

isto be doubled, however, adding it to itsalf is quicker than shifting it left by one bit.

22T hese have been reduced to 28 and 56 cycles, respectively, on the 68030.

25

Avoid the Trap Dispatcher

The Macintosh provides a rich set of over 1100 system routines for performing everything
from drawing to file I/O. Most of these routines are stored in ROM, yet because their specific
ROM locations may differ from one Macintosh model to the next, applications do not access
ROM routines directly (by address) but instead through the Trap Dispatcher [23]. Before we
describe the Trap Dispatcher, however, it is necessary to know a little more about how the
68000 works.

The shortest 68000 instruction is one 16 bit word, the most significant 4 bits of which is
called the opcode. The opcode, represented in hexadecimal from O to F, separates the 68000 in-
struction set into functional groups. Only 14 of the opcodes are used on the 68000; there are no
instructions beginning with the opcodes A or F. Since the development of the 68000, Motorola
has made use of the F opcodes to describe instructions for their floating point coprocessors, the
68881 and 68882. Instructions beginning with A, however, will till generate a ‘Line 1010° ex-
ception (or A-Trap) when encountered by the 68000.

Apple has taken advantage of this behavior by making al of their ROM calls be single word
instructions beginning with A. When such an instruction is encountered, 68000 state is saved
and execution begins at the address stored in A-Trap exception vector location $28. By storing
the address of the Trap Dispatcher in this location at startup, all subsequent A-Traps are
processed by this routine. The Trap Dispatcher inspects the rest of the word that generated the
A-Trap, looks at the * Trap Dispatch Table' to determine where the routine corresponding to that
word is stored on the current machine, and finally passes execution to it.

The advantage of this technique is that the ROM configuration can change from machine to
machine, yet the Trap Dispatcher will always find the correct routine. The disadvantage is that
the Trap Dispatcher is slow. First, the Line 1010 exception requires 34 cycles to complete, then
the Trap Dispatcher routine, involving at least 14 more instructions, must execute. While this

penalty is tolerable for individual ROM calls, it becomes quite a burden when included in a tight

26

loop. For this reason, ROM calls were never made inside loops and were eliminated from

virtualy al routines in the assembly language routine library23.

Use Lookup Tables

Whenever successive calls to a routine result in the duplication of calculations, gains in
execution time may be made by storing their outcome in a lookup table. Then instead of
repeating the calculation on every call, the lookup table can be accessed instead. As long as
accessing the lookup table is faster than performing the calculation itself, precious time can be
saved. In the case of the FHT, bit reversal, twiddle factor and address calculations are all
duplicated each time the routine is called, yet for a given sequence length N, these calculations
always produce the same results. Should these calculations be replaced with lookup tables? In
two cases, the answer isyes.

One negative aspect of lookup table usage is that the code loses its independence; it becomes
the programmer’s responsibility to bring the code and the table together in cooperative union.
Another drawback is the implicit limitation on sequence length imposed by a lookup table.
Finally, lookup tables use up valuable memory. In applications where memory is limited, the
speed advantages a lookup table might bring may be outweighed by its size. While the latter dis-
advantage wanes with RAM prices, the former two remain important; self contained code is al-
ways nicer to work with. Fortunately, in the Resource Manager (described in more detail
below), the Macintosh provides a mechanism which facilitates the storage and dynamic allocation
of memory for lookup tables, greatly facilitating their use.

The decision to put the twiddle factors in alookup table was not hard to make: Each twiddle
factor table entry requires a sine or cosine call and transcendental functions are notoriously slow.
Furthermore, the size of the table needed is not prohibitive. For a sequence of length N, N/4 sine
terms and N/4 cosine terms are needed, giving atable N/2 termsin length. While the smilarity of
the sine and cosine terms could be exploited to reduce this the table size to N/4, this was not

done here. The maximum N required by the Image program is 2048, giving a twiddle factor

23An aternate solution is to use the routine GetTrapAddress once to determine the physical address of the ROM
routine of interest. Jumping directly to this address then eliminates the delay incurred in repeatedly using the
Trap Dispatch mechanism.

27

lookup table 4K in size. This is smal when compared to the images being operated on, often
300K insize.

A lookup table for bit reversal was also used to speed up that operation as is described in
more depth under ‘Evolution of the Utility Routines' below. For the bit reversal operation, a
separate lookup table is required for each sequence length in [64, 128, 256, 512, 1024, 2048],
the largest requiring 3972 bytes of storage space. Again, thisis small compared with the size of
the images in memory, and since the memory for the lookup table needed is dynamicdly
alocated, it can be recovered if necessary after the bit reversal computation is complete.

As discussed above, the retrograde indexing characteristic of the FHT leads to a sequence of
addresses (array indexes) that is not as regular as in the fast Fourier transform. Because of the
added complexity of the retrograde index calculation, the addresses were originally put in a
lookup table. The rationalization used was that the memory fetch and pointer increment required
for the lookup table could aways be executed more quickly than the retrograde index calculation
itself24, The drawback was that the address lookup table required 20K of storage space for a
maximum sequence length of 102425, Increasing the sequence length to 2048 would have
required doubling the lookup table size to 40K. This rather severe restriction on sequence length
was overcome by studying the address sequence generated by the FHT and developing an
efficient means for its calcul ation?®.

Eliminating the address lookup table removed one restriction on sequence length in this FHT
routine. The bit reversal and twiddle factor lookup tables, however, still impose restrictions on
sequence length. Even so, these lookup tables could be made large enough to accommodate
arbitrarily long sequences. Therefore, it is not the lookup tables that set a practical limit on
sequence length, but the way in which data is addressed. Study of the FHT source code in
Appendix F shows that offsets into the date?’” are stored as 16 bit words. This limits the

240 memory fetch and register increment (ADDA) take about 25 cycles, while the quickest instructions require
about 4 cycles. If the address can be calculated using 4 fast instructions, then no lookup table is needed.

25The table included 5 words (10 bytes) for each dual-radix butterfly; 4 words for the addresses of the dual
butterfly elements and 1 for the address of the twiddle factor. For the 8 stages requiring the table for N = 1024
(the first two stages do not), there are 256 dual-radix butterflies. Tota table size was therefore 8 x 256 x 10 =
20,480 bytes.

26The addresses, names Ad1-Ad4 and CSAd, are easily generated with program DFHT3.p in Appendix E
2’Documented as Ad1 - Ad4 in Appendix E and Appendix F

28

maximum array index to 21° - 1, or 32K. Data are stored as 16 bit words, however, so the
maximum index is actually limited to 16K. Since few people ever need to take transforms longer

than 16K, this restriction seems justified.

3.2Makingthe FHT Accurate

By using integer arithmetic, the speed of computation is enhanced at the expense of its accu-
racy and ease of coding. Many techniques for dealing with the limitations of integer arithmetic in
digital signal processing applications have been developed over the years, severa of which have

been exploited here to minimize error.
Scaling

In each of the FHT butterflies, three input terms are summed to generate two output terms?e:

H (k) = He(k) + [Ho(k)cos(28k/N) + Ho((N/2) - k)sin(28 k/N)]
H(k + N/2) = He(K) - [Ho(k)cos(28k/IN) + Ho((N/2) - k)sin(25k/N)] (20)

If the input terms are all normalized to 1 and 2[K/N isset to (/4 to maxi mize the contribution of
the trigonometric terms, the largest possible result is 1 + \/E . The maximum growth per stageis
therefore 2 bits, although in practice the maximum average growth per stage is one bit [24].

This overflow characteristic effectively reduces the dynamic range of the integers used by 2
bits. Since images are stored as matrices of 8 bit pixelsin the Image program, only 6 bits of dy-
namic range would be available for an in-place transform calculation. This is far too little
dynamic range in which to perform a complex, iterative integer calculation, so the transform
calculation is instead performed on a copy of the image which has been vertically scaled to fill a
14 bit dynamic range in a 16 bit deep image buffer. This not only provides the needed dynamic
range for an accurate transform calculation, but aso insures that an image can be transformed
and inverse transformed severa times before the inevitable degradations due to integer
computations become apparent in its 8 bit representation.

These degradations stem in part from the persistent, stage by stage growth of the data and

the limited dynamic range of integers. Severa techniques have been developed to dea with this

28| n the first two stages, the transcendental terms are either 0 or 1 and overflow is limited to one bit.

29
stage-wise data growth [24,25]. One simple solution, called unconditional scaling, right-shifts
al the data in an input sequence of length N by logoN bits before the transform is computed.
This straightforward technique ensures that no overflow will occur during the logoN stage FHT
computation and eliminates the need for the routine itself to monitor data growth, yet has
obvious drawbacks. First, if the input data are al less than logoN bits in magnitude, the
unconditional shift will zero out the entire sequence. This situation could be avoided by finding
the extrema of the data and right shifting only the minimum number of bits necessary to prevent
overflow. Still, by assuming the worst case overflow will always occur, unconditiona shifting
‘throws out’ information before the transform computation even starts.

In practice, overflow does not occur on every stage and will often average less than 1/2 bit
per stage. The block floating point scaling technique exploits this behavior by monitoring the
data growth stage by stage. If, after a given stage, the data has overflowed (exceeded its maxi-
mum allowable range), then the whole data sequence is right-shifted by the number of bits of
overflow and a scaling counter is incremented to reflect the total accumulated scaling. Because it
IS necessary to monitor numbers exceeding the ‘maximum alowable range’ without actually
experiencing arithmetic errors, thisrange is 2 bits smaller than the maximum range of the integers
used. Since we use 16 bit integers, our dynamic range is reduced to 14 bits, or numbers in the
range -8192 to 8191. In this way, a data sequence that generates 2 bits of overflow before the
first scaling operation takes place will not produce any fatal arithmetic errors.

By monitoring data growth during the transform computation, the block floating point tech-
nique minimizes the amount of information ‘thrown out’ and was therefore adopted for use in
our FHT routine. In implementing this technique, however, it was considered undesirable to re-
scan the data after every stage which generated overflow to restore the proper scaling®. The
additiona memory accesses involved in this process were avoided by using three local variables
and atrick.

The trick makes use of the fact that we are interested only in the bit-magnitude of the data

generated in each stage and not in the decima value; only if a number exceeds 14 bits do we

29Adam Erickson, private communication.

30

need to perform data scaling. The bit-magnitude of the sequence is monitored most quickly by
bitwise OR-ing the absolute value of each element. If any of the values generated in a given
stage fall outside the range £8191 but within the range +16383 (are 15 bits in magnitude), one bit
of overflow occurred; if any vaues attain 16 bits in magnitude, 2 bits of overflow occurred.
Once one bit of overflow has occurred on a given stage, further one bit overflows needn’'t be
monitored. Likewise, when the maximum overflow of two bits has occurred on a given stage, no
overflow checking is necessary for the remainder of the butterflies in that stage. In this way, the
amount of time spent checking for overflows is minimized.

The number of bits of overflow encountered in a given stage’'s computation is stored in a
local variable, NewShift (Appendix F). At the end of that stage, the value of NewShift is added
to the variable ShiftTotal, recording the total number of bits shifted during the transform.
NewShift is then copied into another local variable, OldShift, before being zeroed for the coming
stage. During the next stage each incoming data element is right shifted by OldShift bits. This
method avoids the unnecessary memory accesses that an explicit scaling subroutine would
involve in every stage but the last. Should the last stage produce overflow, an explicit scaling
loop is still necessary.

When the transform computation is complete, the variable ShiftTotal is returned to the caller.
If the programmer wants to restore the proper scaling to the data, the sequence can be multiplied
by 2shiftTotal (shifted left by ShiftTotal bits), but this will often cause the data to exceed 16 bitsin
magnitude. The most compact form of storing the transformed sequence is to maintain its expo-
nent, ShiftTotal, in a separate variable.

Part the Hartley transform’ s beauty is that the forward and inverse transforms differ only by a
factor of 1/N. Our routine therefore makes no distinction between the forward and inverse trans-

forms and leaves it up to those programmers interested in maintaining proper scaling to subtract

logoN from the exponent after an ‘inverse’ transform has been calculated.

Rounding

The accuracy of the FHT routine can be further enhanced by using rounding techniques to

minimize the inevitable error introduced when data are shifted out during scaling. There are

31

many aternatives to simple truncation, which ignores the bits being shifted out. Five of these are

listed here [26]:

Up/Down Rounding. The mid way points are are shifted up/down to the next allowable value.
Magnitude Up/Down Rounding. The mid-way points are moved away from/toward zero .
Value-Alternate Rounding. Adjacent mid-way points are aternately moved up and down.
Random Rounding. The direction of rounding is pseudo-random.

Sage-Alternate Rounding. The direction of rounding alternates on each stage of the FFT.

agrwNE

Like scaling, however, the accuracy gained by rounding is paid for in ower execution times.
Obvioudy, some techniques, like random rounding, may be more difficult to implement effi-
ciently than others. We chose to implement up/down rounding because it could be performed by
inspecting the last bit shifted out. Thisis conveniently stored in the carry bit of the 68000’ s con-
dition code register. If the carry bit is 1 after a right shift operation, then the m bit number
shifted out was larger than 2M/2 and a round up operation is performed by adding 1 to the result
(thisis easily shown to work for negative numbers as well). If the carry bit is zero, the result is
rounded down by being left asis.

This very simple form of rounding only takes two instructions after the shift operation:

ASR W D7, D4 ; arithnetic shift right

BCC. S RoundDnl ; branch on carry clear to RoundDnl
ADDQ W#1l, D4 ; if carry set then round up
RoundDn1 ... ; continue here

When shifting by more than one bit, this is a cheap and worthwhile form of up/down rounding.
When there is only one bit to shift, however, this implementation reduces to a ssimple round up
operation and is no better than truncation’s round down. Since two bits of overflow occur only
rarely in a given stage30, no rounding was used during the overflow shift operations. Instead, this
rounding scheme was employed when the 32 bit result of the twiddle factor multiplications was
scaled back down to 16 bits for storage and when the row transforms were normalized to a
uniform scale. The latter case is described in more detail below under ‘Row Shifting’, while the

former is discussed immediately below.

3050 rarely, in fact, that at one point a version of the routine was developed to accommodate only 1 bit of
overflow. This increased the dynamic range of the input and output to 15 bits and worked admirably in practice.
Unfortunately, certain sequences (like 16383, 0, 0, 0, 16383, 0, 0, 0), could make this routine fail by producing
two bits of overflow on the third stage.

32

Double Precision Accumulation

The twiddle factors, cos(2[k/N) and sin(2[k/N), are approximated by 16 bit integers and
stored in a lookup table (see Appendix D, Resource Formats). To make the twiddle factors fill
the dynamic range of the integers used to represent them, they are multiplied by 215, Therefore,
twiddle factor multiplication in the FHT routine implicitly scales the data up by 215, Since the
68000" s multiplication instruction takes two 16 bit words as arguments and returns a 32 bit long
word product, the 32 bit twiddle factor product must be scaled back down to 16 bits for in place
storage. This is done by using the arithmetic right shift instruction and the up/down rounding
scheme just discussed.

Thisis not done immediately after the multiplication, however, but is postponed until just be-
fore the data are stored. By performing the additions and subtractions that follow the twiddle

factor multiplication in double precision, the accuracy of the overall calculation isimproved.

3.3 TheFully Evolved FHT Algorithm

The final 68000 assembly language implementation of the FHT agorithm exploits al the
points discussed above to maximize its speed and minimize its error. For the inquisitive reader, a
listing of an FHT routine in Pasca is included in Appendix E, while the assembly listing is in

Appendix F.

Timing Results

Because the FHT routine only uses instructions in the 68000 instruction set31, it can run on
all Macintosh computers. Figure 5 shows the execution times in milliseconds as a function of se-

guence length for three 68000 based Macintosh computers. the Macintosh 512KE, Plus and SE.

31Some of the utility routines use the FPU, restricting their use to computers with the 68881 or 68882 FPU.

33

300

—O— 512KE
—+— Plus

200 7

100 7

Execution Time [ms]

N

SE

64
128
256
512

1024

128

256 384 512

640

Sequence Length

768

896

512 KE | Plus
10.3 10.3
245 245
57.4 57.4

132.0 131.8
298.3 297.7

ﬁ

8.9
21.2
49.7

114.3
258.7

1024 1152

Figure5: FHT Execution times for 68000-based Macintosh computers.

The Macintosh Plus and 512 KE are seen to have very similar execution times, while the SE is

about 13% faster, requiring only 259 milliseconds for a 1024 point FHT.

Execution times for the Macintosh SE30, 1, Ilcx and Ilci computers are shown in Figure 6.
70
N [SE30[lici
60 - 64 22 25
128 51| 57

50| 256| 11.9| 13.0
- 512| 27.2| 295
E 40l 1024] 61.3] 661
Q
=
|_
c 30 7
S
3 —O— sER0
x 20 7
a] —o— |

10 - v llex

: X lci
oT — T T T d T d T T T T T
0 128 256 384 512 640 768 896 1024 1152

Sequence Length

Figure 6: FHT Execution times for 68020- and 68030-based M acintosh computers.

Of dl of these machines, only the Macintosh Il is 68020 based; even though it has the same 16

MHz clock frequency as the Macintosh SE30 and Ilcx computers, the latter two both use the

68030 processor and run about 7% faster. The Macintosh llci’s 25 MHz 68030 completes a

34

1024 point FHT in only 39 milliseconds, making it 37% faster yet, or amost 8 times faster than
the original Macintosh.

While these execution times are interesting, they alone do not determine the execution speed
of the final two dimensional FFT. Before such a computation can be undertaken, there are many
utility routines that need to be implemented, any one of which could slow down the whole

process considerably. The implementation of these routines is discussed in detail below.

4. DETAILSOF THE UTILITY ROUTINES

Bit Reversal

A natura consequence of the stage-wise ‘decimation’ occurring in every in-place FFT or
FHT is the bit-reversed permutation of the transformed sequence [14,20]. ‘Un-shuffling’ the
sequence is therefore atask that must be performed either before or after every transform. While
this task doesn’t require much computation in comparison to the transform itself, it can approach
10% of the total execution time required for a particular transform [20] and therefore bears
inspection and optimization.

First note that bit reversal is smply an in-place data swapping operation. Consider the ele-
ments of an array of length N, where N is an integer power of two. The bit-reversal operation
scans this array and swaps the element at index | with the element at index I', where I" is the mir-
ror image of | when both numbers are represented base 2. Since some numbers are symmetrical
under the binary mirror operation of bit reversal, the array elements with these indices don’'t need
to be swapped at all. Asillustrated in Table 4, there are 4 such elementsin an array of length 16.

In sequences of 32 and 64 elementsin length, there are 8 such elements. In general, there are
log,N
1=

bit-symmetric indices for an array whose length, N, is an integer power of 2. Although the pro-
portion of symmetric indices decreases with increasing N, avoiding unnecessary swaps Saves

precious time.

35

36

| ndex Base | ndex Base Bit- Bit-
10 2 Rever sed Rever sed
| ndex Base | ndex Base
2 10
0 0000 0000 *0
1 0001 1000 8
2 0010 0100 4
3 0011 1100 12
4 0100 0010 2
5 0101 1010 10
6 0110 0110 *6
7 0111 1110 14
8 1000 0001 1
9 1001 1001 *9
10 1010 0101 5
11 1011 1101 13
12 1100 0011 3
13 1101 1011 11
14 1110 0111 7
15 1111 1111 *15

* Nunmbers symetric under bit-reversal operation
Table 4: Bit Reversal Made Clear.

Typicaly, the bit reversed index caculation is done by a straightforward sequence of bit
shifting operations. Since the bit-reversed indices are unique for a given N, repeating this bit re-
versal calculation for every sequence of length N is wasteful. As mentioned earlier, the solution
isto use alookup table to store the bit-reversed indices. This alows the bit-reversal operation to
proceed without any bit-shifting operations or conditional tests to find bit-symmetric indices. In
the final implementation, the lookup tables for N in [64, 128, 256, 512, 1024, 2048] were stored
in a resource®? as arrays of integers. The table for N=1024, at only 2K in size, is small when
compared to the 300K required by many images, but is the same size as a linear 16 bit sequence
of length 1024. Either way, the memory for the table is alocated dynamicaly and can be
released when no longer needed. Using an assembly language implementation of this lookup
table technique proved to be over two orders of magnitude faster than than its direct-compu-
tation counterpart coded in THINK Pascal (see Appendix B for complete timing results).

To further speed the bit-reversal operation, the routine BitRevRows was assembly coded to
perform the bit reversal on each row of the image matrix. By bit reversing al the rows together,
only two calls to this routine are required during the transformation of an NxN image matrix, in-

stead of 2N calls.

32The details of the resource formats used can be found in Appendix D, while more general information on
Macintosh resources is to be found in the section on the Macintosh Toolbox below.

37

Row Shifting

As described above, the FHT routine returns the number of bits, m, of overflow that occurred
during the transform calculation. In order to obtain aresult that is properly scaled, the transform
sequence must be multiplied by 2™, When transforming an NxN image matrix row by row, the
amount of overflow will vary from row to row. In order to insure that al rows have the same
scaling before the computation proceeds, it is necessary to perform a row-wise scaling adjust-
ment.

During the sequence of row transformations, the scaling, mj, of each row isrecorded in an ar-
ray. The maximum row scaling, My, of al rowsis aso recorded in a separate variable. When the
row transformations are complete, each row i is then right shifted by M,-m; bits to give it the
same scaling as the row which incurred M, bits of overflow. This is performed by the routine
ShiftRowsR, which, like BitRevRows, performs the shift operation for each row of the image
matrix and therefore need only be caled twice during the two dimensiona transform routine.
The total scaling undergone by the image matrix during the 2D transform is then M, + M, where
M¢ is the maximum overflow incurred during the column transforms. This scaling, or exponent,
is returned to the calling program.

The R a the end of ShiftRowsR stands for Rounding. In this routine, the same Up/Down
rounding technique described above in ‘Making the FHT Accurate’ was used. Since rows are
often shifted by more than one bit, this was an appropriate use of this rounding technique. While
no quantitative study was conducted here to determine the effect this rounding scheme had on

signal to noise ratio, the qualitative improvement was immediately apparent.

Matrix Transposition

As described above, the two dimensional Hartley transform can be recovered from a matrix
which has been row- and column-transformed using a one dimensiona Hartley transform routine.
Since the image is stored as a sequence of rows in memory, transforming each row is straightfor-
ward. Elements of a particular column, however, are interleaved in memory at intervals equal to
the row length, complicating the addressing required to access them. Therefore, instead of creat-

ing specia code to access column e ements directly, the whole matrix is transposed in place. The

38

column transforms are then performed using the same Hartley transform routine as was used for

the rows and, once complete, the matrix is transposed back to its original orientation.

Block Swapping

The indexing convention used places the spectral components corresponding to low spatial
frequencies in the corners of the matrix as shown in Figure 7a. For example, the zero frequency,

or ‘DC’, component of the matrix is in the upper left corner of the power spectrum matrix.

Block Swap Figure

Figure 7a & b: Block Swap Example.

Power spectra are normally displayed with the low spatial frequencies at the center of the matrix
as in Figure 7b, corresponding to the form of natural diffraction patterns. To create this
preferred viewing arrangement, quadrants 1 and 3 of the power spectrum matrix are swapped, as
are quadrants 2 and 4. This ‘block-swapping’ operation is carried out every time the power
spectrum is displayed. Like matrix transposition, block-swapping’s smple memory movement

does not take much time.

Row-Column HT to Two Dimensional HT Conversion

In contrast to the two dimensional Fourier transform’s separable exponentia kernel,
exp[x2[i(n 1k1/N1 + noko/N>)], the two dimensional Hartley transform’s kernel, cag2[(h 1ki/N1
+ noko/No], is not separable. Therefore, applying the one dimensional Hartley transform to each
row and column of the image matrix does not give us a two dimensional Hartley transform, but
the two dimensional Hartley transform can be derived from the function that results from this

row-column operation,

39

N2-1 Ni-1
T(kl,kz) = e L] V(I’Il,nz) cas(2§ k]_l’l]_/N]_)CGS(Zé kzl’lz/N 2),
n2=0 n1=0 (24)

by asmple computation [27]. Using the trigonometric identity
2cas(a+b) = cas(a)cas(b) + cas(a)cas(-b) + cas(-a)cas(b) - cas(-a)cas(-b), (25)

it iseasly seen that the Hartley transform H(k1,k») can be computed from T(u,v) using

2H(k1, k2) = T(ky, k2) + T(N1-kq1, ko) + T(k1, N2-ko) - T(N1-k1, N2-ko)
=A+B+ C-D. (26)

This computation is carried out most efficiently if one first computes the value

-1 -
E= 2[(A + D) - (B + C)]. 27)

Then T(u,v) can be converted into H(ky,ko) at the four matrix locations A-D using the in-place

calculation
A=A-E
B=B+E
C=C+E
D=D-E. (28)

For an N1xN> matrix, this calculation need be only carried out N1N2/4 times, each calculation in-
volving 7 additions and one shift operation. While the extra post processing required to create a
two dimensiona Hartley transform from the row-column transform increases the operation count

by 8% for an 8x8 matrix, this proportion diminishes with increasing array size [27].
Computing the Power Spectrum

While the magnitude and phase of the Fourier transform can be recovered from the Hartley
transform of an image, they comprise two separate images that can be difficult to interpret.
Although it doesn’'t contain phase information, the power spectrum, or squared modulus of the
Fourier transform, is more commonly displayed since it corresponds directly to optical diffraction
patterns. In one dimension, the power spectrum, P(f), is computed from the Hartley transform

asfollows

40

P(f) = F? + F7
= E(f)* + O(f)?

_[H(O +HEDP +[H(f) -HENP
2] 2 |

_ [H(O1%+ [H(N1?
2 (29)

and is therefore an even function of f.
When computing the discrete power spectrum of a sequence of length N, the ‘negative fre-
guencies occur in the second half of transform array and H(-k) becomes H(N-k), giving

P(k) = [H (K)]? k=0

_ [H()1? + [H(N-K)]?
2

k=14,
2 (30)

where the specia case when k is 0 can be eliminated if one computes N-k modulo N. Using this
modulo index arithmetic, the two dimensiona power spectrum P(kq,ko) of the N1xN> discrete
Hartley transform H(ky,ko) is likewise computed using

[H(k1,k2)]? + [H((N1-k1) mod N1, (N2-kp) mod Np)]?

P(ki,k2) = >

N N
k1= [o..?l], ko = [0..=2].

2 (31)
While the consequence of the modulo index arithmetic is easly understood in the one
dimensiona case, in two dimensions it leads to a non-intuitive traversal of the H(ky,kp) matrix.
Figure 8 shows one possible H(ky,ko) traversal for an 8x8 power spectrum calculation. The

numbers in the matrix correspond to the computation sequence taken: two e ements marked with
the same number correspond to an H(k1,k2), H((N1-k1) mod N1, (N2>-k2) mod N») pair, while

bold numbered elements are squared in place.

41

30131|32|33(32|31|30

16(9 (10(11(12(13|14(15
24117118|19|20|21|22|23
29|25(26|27 |28 |27 (26|25
24123122121120119118|17
16(15(14(13(12|11{10(9

Figure 8: H(ky,ko) array traversal for
power spectrum calculation.

Immediately one sees that the first row and the first column of the two dimensional power spec-
trum are computed exactly as in the one dimensional case. The remainder of the calculation
operates on pairs of numbers diametrically opposing one another about the matrix’s central
element.

Computing the power spectrum of H(kq,ko) in the present application was complicated by is-
sues of memory utilization and data scaling. While the power spectrum could be computed in
place, that would destroy the original Hartley transform, making further operations such as in-
verse transformation impossible. The size of the ‘FFT Buffer’ in which H(kq,ks) was stored is
also so large (512K for a 512x512 point transform) that temporary alocation of a comparably
sized scratch buffer was an unattractive solution. It was therefore resolved to create a routine
that computed the power spectrum and put the scaled result into the 8 bit deep off-screen
graphics port (required by every window) without disturbing the origina transform. This
minimizes the routine’s memory demands, but there is still a problem of data scaling. During the
power spectrum calculation, two 14 bit numbers are squared and summed to give a 29 bit resullt.
This number must then scaled down to 8 bits for storage using a mapping based on the power
spectrum’s dynamic range. But the power spectrum’s dynamic range cannot be determined until
the power spectrum calculation is complete! Consequently the power spectrum is actualy
calculated twice: The first H(k1,ko) traversal finds the extrema of the power spectrum and the
second H(k1,k2) traversal uses the mapping based on these extrema to store the re-computed

result.

42

Typicaly, power spectra are logarithmically scaled to bring out detail in low amplitudes.
There are times, however, when a linear scaling is desirable or when an intermediate scaling be-
tween the linear and logarithmic extremes is most appropriate. The power spectrum routine was
therefore designed to support both linear and log scaling as well as Nth root scaling for N in
[2..9]. Inoffering this variety of scaling, it was necessary to use the Macintosh I’ s floating point
unit, an 68881 or 68882. While the FPU is typicaly slower than the host processor (a 68020 or
68030) for ssimple arithmetic operations, its logarithm and exponentiation functions were conve-
nient and, even at about 500 cycles apiece, speedier and more accurate than the alternatives

using integer arithmetic which were considered.

Computing Convolution & Deconvolution

Like the Fourier transform, the Hartley transform has a convolution theorem which can be
exploited to speed convolution calculations. In the Fourier domain, the convolution theorem is

expressed by the transform pair
Vi® * Vo) O Fu(f)Fa(f),

where V1 and V, are space domain functions with Fourier transforms F, and F,. Using the

Hartley transforms H; and Ho of V1 and V5, the Hartley transform convolution pair is

V() * Vo) U ';_"[Hl(f)HZ(f) -Hi(-)H2(-f) + Ha(F)H2(-f) + Ha(-F)H2(F)],

which can be verified by substituting equations (4) into the expression for Fourier convolution.

By factoring out the even and odd components of Ho, this transform pair can be more succinctly

expressed [15]
Vi® * Vo) U Hi(fHoe(f) + Ha(-F)Hoo(f).

While the Hartley convolution appears to be more complicated than its Fourier counterpart, note
that the complex multiplication in Fourier convolution involves 4 multiplications and 3 additions
— the same number of operations required by Hartley convolution. Furthermore, if either or

both of the functions V1 and V5 is even or odd, then the Hartley convolution product reduces to

aform similar to its Fourier counterpart: a point by point multiplication of the transforms[15].

43
Similarly, the deconvolution of V1 and V5 is computed by performing a complex division

of F, and F>. Denoting deconvolution as <, the deconvolution Fourier transform pair becomes:

~ Fi(f) _ Fi()F2(f)
Vi) h Vo) U = :
0N V20 S T FIE

Hartley deconvolution involves a similar computation and gives the following transform pair:

Ha(f)H2e(f) - Ha(-F)H20(f)

vih h vy O
[H2(F)]% + [Ha(-f)]?

In contrast to the monadic operations discussed thus far, dyadic operations like convolution
and deconvolution require that the relative scales of the transforms Hy and H» be preserved.
Recall that the scale or exponent of atwo dimensional FHT is the sum of the maximum overflow
incurred during both the row and column transforms. Unfortunately, keeping track of the scaling
isnot as ssimple as just adding exponents when multiplying and subtracting exponents when divid-
ing.

Computing Hartley transform products and quotients also involves addition and subtraction
operations that can influence the overall scale of the result. Furthermore, some portions of the
Hartley product may encounter a net growth in their exponent during the calculation, while
others may not. This dtuation is similar to the FHT calculation itself, where the maximum
overflow must be monitored during the computation and the result scaled to reflect this
exponent. Since time was limited3? and implementing such block floating point calculations in
assembly language is non-trivial, more simple implementation alternatives were sought.

The exponent of a two dimensiona transform can be as large as 2logoN, or 22 bits for a
2048x2048 image (the largest allowed by the Image program). Since the dynamic range of the
Hartley transform is 14 bits, the total dynamic range can exceed the 32 bit size of the 68000's
registers. Because the scaled data could not be easily manipulated in an integer format, the

Macintosh II’ s floating point unit was used.

33The code for the dyadic frequency domain operations was originally written to satisfy the requirements of a
course in image processing and has been included here for completeness. Because a quick implementation was
sought, not as much emphasis was placed on minimizing execution time.

44

Using floating point operations frees the programmer from the complications of the block
floating point technique and results in code that is both easy to read and easy to write. The price
paid for this luxury, however, is in execution speed, asis easily seen in the section on timing re-

sults below.

Computing Correlation

Another frequently used dyadic frequency domain operation is correlation. Like convolution,
correlation may be more efficiently computed by exploiting the correlation theorem. The Fourier

transform pair for correlation is
Vi H Ve U Fu()Fa(f),
where % denotes correlation. The Hartley transform equivalent is expressed
Vi H Vo) U Hi(f)Hze(f) - Hi(-f)Hzo(f).

Frequently the autocorrelation of an image is sought. It follows directly from the above relations

that the Fourier and Hartley transform pairs for autocorrelation are

VigH vi@®) U [IFu(HIP and
Vi H va© 0 rup? + Haep?

respectively. While the autocorrelation’s symmetry reduces its operation count to half of that in-
volved in a general cross correlation, this was not exploited here. Instead, the computational
amilarity of convolution, deconvolution and correlation was used to incorporate al three
operations into one routine3*. Since al three operations involved sequential accesses of the
Hartley transform at both positive and negative frequencies, the H(kq,ko) array traversal was
identical to that for the power spectrum calculation. In order to conserve memory, it was again
necessary to perform the calculation twice, once to monitor output extrema and develop

mappings, again to store the mapped output. In contrast to the power spectrum calculation,

34Named Hcdc2BufsF for Hartley Convolution, Deconvolution & Corrleation of 2 Buffers using the FPU.

45

however, both traversas involved heavy use of the FPU in this routine, sowing it down
significantly.
4.1 The Fully Evolved Two Dimensional FHT Algorithm

Using the FHT and utility routines in concert, the power spectrum of an image is computed

as follows3®:

©

Copy the memory from the image into the FHTBuffer, expanding the image’s 8 bit dynamic
rangeto fill the buffer's 16 bit dynamic range (routine DbIMem).

1. Bit-reverse the rows of the FHTBuffer (BitRevRows).

2. Compute the FHT of each row of the FHTBuffer (FHT).

3. Normalize the scaling of al rows (ShiftRowsR).

4. Transpose the FHTBuffer (Transpose).

5. Bit-reverse the rows of the FHTBuffer (BitRevRows).

6. Compute the FHT of each row of the FHTBuffer (FHT).

7. Normalize the scaling of al rows (ShiftRowsR).

8. Transpose the FHTBuffer to its original orientation (Transpose).

9. Compute the two dimensional FHT from the row-column FHT (ToRCFHT).

10. Compute the power spectrum, storing the scaled output in the 8 bit deep image buffer of the

newly created frequency domain window (PSFHT2D).
11. Swap image quadrants to reflect natural orientation of a diffraction pattern (SwapBBlock).

Because the actual FHT accounts for only a portion total power spectrum computation, it was
important that the utility routines be optimized as well. The combined efficiency of the bit
reversal, matrix transposition, power spectrum and FHT routines brought the total execution
time down to a tolerable number of seconds. The source code incorporating these routines to
perform the algorithm above was written in Pascal and can be studied in Appendix E. Complete
timing results may be found in Appendix B, while the execution times of most interest are

presented here.

Timing Results

The complete power spectrum computation was timed on two different machines, a
Macintosh Il with 8 Megabytes of RAM and an Macintosh llci with 5 Megabytes of RAM. In

both cases, Image was run under the Finder36 and a logarithmically scaled power spectrum was

35The inverse transform differs only in that the power spectrum and block swapping operations are replaced with
aroutine (IntToByteF) that maps the 16 bit FHTBuffer into the 8 bit output image matrix.

3BMultifinder was observed to increase the overhead from 72% to 85% for a 64x64 point power spectrum
calculation on the llci, so the Finder was used in al benchmarks.

46

calculated with the ‘Mean Zero’ and *Clip Output to [1..254]" options disabled (these options are

described in Appendix A). Thetotal execution times for both machines are shown here:

2D FFT Tot al Execution
Si ze Ti me
|1 Ilci
64 0.8 0.9
128 2.6 2.0
256 10.5 6.5
512 44,9 28.0

Table 5: Total execution times for
2D power spectrum calculation.

The Macintosh Ilci outperforms the Macintosh |l by the ratio of their clock speeds (25/16 MHz),
completing a 256x256 point transform and power spectrum calculation in only 6.5 seconds. This
is quick enough to satisfy most users. For those that are less patient, the recently released
Macintosh I1fx, which boasts a 40 MHz 68030, reduces this time to 4.5 seconds, while a
512x512 point transform on this machine takes only 18 seconds®’. If one haslots of RAM and is
very patient, the Macintosh 1l can compute a 1024x1024 point transform in 3 minutes and 16
seconds.

It isinteresting to see how the total execution time is distributed among the different tasksin-

volved in a power spectrum calculation. This is illustrated for the Macintosh Il and llci in

Figures 9 and 10 respectively:
O Overhead
512 O FHT
E 0 PSFHT2D
ch 256 [0 BitRevRows
kS B shiftRowsR
=
2 ToRCFHT
S 128 a
j’f B Transpose
S
© [l DbiMem
I
64
B SwapBBlock
1 M 1 M 1 M 1 M 1
0 20 40 60 80 100

Percent of Total Execution Time

Figure 9: Percent of Total Power Spectrum Execution Time vs. Image Size for the Macintosh |1 computer.

3"\Wayne Rasband, private communication.

47

O Overhead
512 O FHT
E O PSFHT2D
ch 256 [0 BitRevRows
kS B shiftRowsR
<
2 O ToRCFHT
= 128
j’f B Transpose
S
D B DbiMem
I
64
I SwapBBlock
L L L L 1
0 20 40 60 80 100

Pecent of Total Execution Time

Figure 10: Percent of Total Power Spectrum Execution Time vs. Image Size for the Macintosh I1ci computer.

In these figures, the relative amount time required by the FHT and each of the utility routines
used in the power spectrum computation is plotted versus the dimension of the image being
transformed. ‘Overhead’ is the difference between the the measured execution time and the
execution time predicted from a simple summation of the execution times of the individual
routines. Overhead, which includes memory alocation, opening a new window, and address
calculations, dominates the total execution time on the llci for 64x64 images. Thisis due in part
to the memory allocation process.

The memory of a Macintosh application is divided into two regions, the Heap and the Stack
[28]. All globaly and locally declared variables are stored on the stack, while all dynamic mem-
ory alocation occurs in the Heap. In the Heap, memory is divided into digoint blocks where
each block has severa attributes. A block’s relocatability is its most important attribute; most
blocks on the heap are relocatable, so that when an application requests a block of memory larger
than the largest existing contiguous block, the Macintosh ‘Memory Manager’ can move
relocatable blocks until it frees a contiguous block of the size requested. Non-relocatable blocks
of memory can interfere with this process by fragmenting the heap into sections. For this reason,
when an application requests a nonreolcatable block of memory, the Memory Manager does
everything it can (by relocating other blocks) to place the non-relocatable block at the bottom of

the Heap.

48

Macintosh windows and the FHTBuffer data structures are stored in non-relocatable blocks,
so each time memory for these objects is requested, the Memory Manager does its best to place
them where they will cause no fragmentation. In the process, so much memory movement may
take place that a delay, for example in the creation of a new window, becomes apparent. This
contributes to the computation overhead.

The total overhead decreases with increasing transform size but at 15% and 20% for the Mac
Il and llci respectively, is still significant for 512x512 transforms. The FHT’ s proportion of the
total execution time increases with transform size, accounting for 67% and 63% of the time spent
computing a 512x512 power spectrum on the Macintosh Il and Ilci, respectively. Third most de-
manding is the power spectrum calculation itself, requiring about 10% of the total execution time
for both machines. The remaining six operations, which include bit reversal, row shifting and
transposition, together account for less than 10% of the total execution time. Because they con-
tribute so little to the total computationa load, these utility routines deserve as much credit for

minimizing the total execution time as the FHT itself.

As described above, the dyadic frequency domain operations were implemented using the
FPU, with the result that their performance is sub-optimal. The execution times of these routines

on aMacintosh Ilci computer are given in Table 6.

I mage Add/ Sub Convol ve Deconvolve Correlate
Si ze
32 0. 04 0. 09 0.12 0. 09
64 0.14 0. 37 0. 48 0. 37
128 0. 56 1.48 1.93 1.48
256 2.24 5. 89 7.69 5.92
512 8. 96 23. 57 30. 77 23. 68

Table 6: Execution times (in seconds) for the dyadic frequency domain
operations vs. image size on the Macintosh Ilci computer.

For a 512x512 image, the Hartley transform division operation corresponding to deconvolution
takes 31 seconds on the Mac llci which is longer than the time required to compute an FHT of
smilar size. Furthermore, this time does not include the overhead involved in alocating memory

or opening windows. This clearly illustrates why use of the FPU should be minimized.

5. INCORPORATING THE FHT INTO IMAGE

Image consists of about 20,000 lines of uncommented THINK Pascal38 source code, but it is
well structured and fairly easy to read®. The code is divided into 14 units, most of which spe-
cidize in one functional area, such as the units for file I/O, graphics and analysis. The FFT
extensions made to Image also reside in their own unit, and the modifications to the rest of the
code were kept to a minimum.

In making the FFT extensions to Image, much thought and consideration were given to the
details of the user interface and which FFT operations to support. During the development
process, several questions had to be answered: How should power spectra be displayed? What
tools does one need to operate on power spectra? How should these tools be made available?
The way the answers to these questions evolved are discussed here, while detailed

documentation of the FFT extensions made to Image may be found Appendix A.

5.1 User Interface Considerations

I ntroducing Bimodality into I mage

Inside Macintosh, the five volume programmer’s reference for the Macintosh, begins with a
chapter on ‘The Macintosh User Interface Guidelines’ To maintain the regularity among
Macintosh applications that makes them so easy to use, developers are encouraged to follow
these guidelines. For example, it is the developer’ s responsibility to support the ‘ select an object,
then operate on it" metaphor common throughout Macintosh software.

Macintosh developers are also warned to avoid introducing modes into their code, where a
mode is ‘a part of an application that the user has to formally enter and leave, and that restricts

the operations that can be performed while it's in effect’ [28]40. Many kinds of modality are

38THINK Pascal is a product of the SYMANTEC® Corporation.

39Because the source code for Image is so large, it has not been included here. It can be obtained with the
documentation and sample image files via anonymous FTP from aw.nih.gov. Dartmouth community members
can easily download from this site using the application Fetch.

40Anyone familiar with the UNIX editor vi knows how many have struggled with that program’s Edit and
Append modes. Even Microsoft Word 4.0 has four different modes (Galley View, Page View, Outline and Print
Preview), but they merge well to enhance the program’ s functionality with a minimum of confusion.

49

50
unavoidable, however, such as the frequency and space domain modes introduced with Image’s
FFT extensions. To make this modality as transparent as possible to the user, several measures

were taken.

New Windows

Firgt, it was decided that the power spectrum of an image would be displayed in a new win-
dow and not in the window of the original image. By keeping the space and frequency domains
in separate windows, the user can toggle between domains by simply clicking in windows. If a
frequency domain window is front-most, then the program operates in ‘frequency domain mode';
clicking in a space domain window brings it to the front and puts the program in ‘ space domain
mode.’

Although an image and its power spectrum are usualy readily distinguished, the distinction
between domains is reinforced by using different window types for each domain. The space
domain windows are predefined by the Macintosh and have title bars containing horizontal
stripes when the window is active. The window definition function, which is the code that draws
the window, was modified for frequency domain windows to have a diagonal cross-hatching in
the title bars is shown in Figure 1141 . This visual aid reminds the user which domain he is cur-

rently in.

E[JI=—= space

FO4EEEY Frequency SRS EE

Figure 11: Title bars for Space and Frequency Domain Windows.

New Tool Behavior

Since the operations required in the space and frequency domains differ, the initia impulse
was to provide different tools for each domain. This was actually implemented, requiring that
the Image’s tool palette change depending on the type of the front-most window: When a

frequency domain window was front-most, the tool palette provided frequency domain tools and

41The pattern used to paint the title bar may be found at offset $03B8 in the WDEF 0 resource.

51
when the space domain window was front-most, the tool palette provided space domain tools.
This context senditive tool palette is found in commercial drawing applications like SuperPaint™
that support two drawing layers requiring different tools. Because Image's bimodality is very
similar, using a dynamic tool palette seemed appropriate here as well.

There are, however, three reasons why this dynamic tool palette was abandoned. First, far
fewer tools were needed in the frequency domain than in the space domain, making the frequency
domain tool palette appear very sparse. Second, the functionality provided by the frequency do-
main tools differed little from the space domain’s selection tools. Findly, redrawing the tool
palette every time one switched domains was found unsightly. For these reasons, the tool
palette’ s appearance was left unchanged and the functionality of the selection tools was made to
depend on the domain in which they were used. Consequently, it also became necessary to alert
the user of her error whenever he tried to use a space domain tool whose functionality was not
implemented in the frequency domain?2.

When displayed in the format of a natural diffraction pattern, power spectra are even
functions and therefore redundant. If one selects a part of the power spectrum at location (X, y),
the part of the power spectrum diametrically opposite the origin at (-X, -y) is therefore also
selected. The tool palette’ s selection tools were made to reflect this symmetry when a frequency
domain window is front-most by highlighting both the region selected and its reflection through
the origin. When a selection and its reflection overlap, their union is highlighted. Because this
selection tool behavior is very different from the space domain, it reinforces the distinction

between the two domains.

A New Menu

Since al of the FFT extensions made to Image are related, they are included in a single menu
titted ‘FFT.” Depending on the validity of a given operation, its corresponding menu item is
either enabled or disabled (grayed). This prevents the user from trying to perform operations
that don’t make sense in the current context, like performing an FFT of an oval selection. It also

simplifies the code by obviating the need to check for such spurious requests explicitly.

42This may not be asideal as disabling the tools which have no use in the frequency domain.

52

5.2 Operations Supported

While the FFT extensions to Image at least had to support Fourier transformation and inverse
transformation, there was a good ded of flexibility in the choice and implementation of additional
operations. The fina feature set summarized here, while more detail may be found in Appendix
A.

Transformation and I nverse Transfor mation

When using Image’s rectangular selection tool in the space domain, holding down the shift
key constrains the selection to be square*3. Since the FHT algorithm used works only for square
selections whose height and width are an integer power of 2, the selection can be constrained to
these dimensions by holding down the command key44. The power spectrum of such a selection
can then be computed by selecting ‘FFT’ from the FFT menu. This produces a frequency domain
window in which the power spectrum of the selection is displayed with the desired scaling
(logarithmic, Nth root or linear). Since the power spectrum is more often of interest that either
the amplitude or the phase, the FFT extensions to image do not provide amplitude or phase
display or manipulation. Saving the FHT to disk is aso not supported, athough the power
spectra can be saved and re-opened as space domain images.

When afrequency domain window is front-mogt, its inverse FFT may be computed by select-
ing ‘Inverse FFT’ from the FFT menu. This produces a new space domain window of the same

dimensions as the frequency domain window in which the inverse FFT is displayed.

Masking

Masking is a space domain operation used to eliminate cross-shaped power spectra
signatures generated by the discontinuities in an image's periodic extension. By multiplying the

image with a window function that goes to zero a its edges, masking eliminates the

discontinuitiesin its periodic extension and therefore the ‘cross’ in its power spectrum aswell. It

43This behavior is also common across Macintosh graphics applications and has its roots in Bill Atkinson's
original MacPaint program.

44An option to compute the 2D FFT of a square region of any size by first expanding it (using bilinear
interpolation) to the next integer power of 2 dimension was not yet implemented at the time of writing.

53

also aters the spectrum’s leakage function, making tradeoffs between the narrowness of its
central peak and the magnitude of its side lobes [14]. The transition width of the window
function is user-definable, while its cross section shape may be Gaussian, cosine, linear or
parabolic. The latter three correspond to the Hanning, Parzen and Welch window functions,

respectively.
Passing & Filtering

Filtering and Passing are frequency domain operations that alow one to suppress or eliminate
certain spatia frequencies in an image’ s power spectrum before inverse transformation. In anal-
ogy to Masking, Filtering and Passing multiply the power spectrum by a window function. In
contrast to Masking, however, this window function can be very complex: Its shape is governed
by the current frequency domain selection, while its transition width and extrema are user-defin-
able. Filtering is used to suppress or eliminate the spatia frequencies in the current selection,

while Passing does the opposite.

Threshold Zeroing

Threshold Zeroing is a frequency domain operation that can be used to remove spatia fre-
guencies whose power spectral density falls within a certain threshold interval. During threshold-
ing, Image highlights the pixels with values in the threshold interval and allows easy manipulation
of the threshold interval’s size and range. In the frequency domain, the threshold interval can be
adjusted to select a range of power spectral densities to be removed with the Threshold Zero
command. An example using Threshold Zero to eliminate periodic noise from an image is given

under ‘Applications,” below.

Dyadic Frequency Domain Operations

Once one or more frequency domain windows are displayed, dyadic frequency domain opera-
tions can be performed. These include addition, subtraction, multiplication, division and conju-
gate multiplication. In conjunction with the inverse transformation, these operations provide the

ability to convolve, deconvolve and correlate two images. While they provide alogical extension

54

to Image's FFT extensions, the dyadic operations are compromised by their lack of speed and, in

the case of deconvolution, their accuracy.

Getting Around Undo — Automatically

The Mask, Pass, Filter and Threshold Zero operations can be performed either directly on an
image or power spectrum or they can be performed ‘automatically’ on the copy of the image or
power spectrum generated during the transform or inverse transform computation. Except for
Masking, these operations are not undo-able (because that would require storing a duplicate of
the large FHTBuffer), so they permanently ater the transform to which they are applied. The
operation normally provided by ‘Undo’ is therefore provided for in ‘automatic’ calculation.
Since each FFT and inverse FFT operates a copy of the original data, the desired operation can
be automatically applied to this copy during the transform process, leaving the origina
undisturbed.

5.3 Using the M acintosh Toolbox

Resources as Lookup Tables

On the Macintosh, every kind of file (programs included) is divided into two forks, the data
fork and the resource fork. The datafork isin aformat completely determined by the application
that created the file and is accessed with primitive file 1/0O routines. The resource fork, however,
has awell defined structure and may be accessed with the Resource Manager routines. Programs
frequently have no data fork whatsoever, so everything, from menus to text strings to the code
itself, is stored in resources. By separating the components of a program this way, any individua
component (except the code) can be changed without rebuilding the program. All that is
necessary to translate many programs into another (human) language, for example, isto trandate
all the resources containing text strings.

The Resource Manager makes accessing resources very easy for the programmer and
provides a pseudo-virtual memory behavior. With a simple ‘GetResource’ call, a program can

gain access to a resource. The Resource Manager will allocate memory for that resource and

55

load it from disk if it has not aready done so during a previous GetResource call. Resources can
also be made purgeable, so that the memory they occupy can be recovered when needed.

The Resource Manager provides a very convenient means of storing the twiddle factor and
lookup tables required for the FHT calculation. As resources, these tables can be changed inde-
pendently of the code and benefit from the Resource Manager’s dynamic allocation techniques.
Typicaly, the memory required by these tables is so small that they are loaded once during the
first FFT calculation and never purged.

6. APPLICATIONS

To illustrate the power and breadth of Fourier domain image processing techniques and how
Image can be used to exploit them, five sample applications are described here. These are
divided into three sections including examples of image restoration, image enhancement and

pattern recognition.

6.1 Image Restor ation

Noise Removal Using Spatial Filtering

If periodic noise corrupts an image, it can often be removed more easily in the frequency do-
main than in the space domain. Figure 12a shows a portrait so corrupted by periodic noise that
the details are difficult to make out. In Figure 12b, the power spectrum of this portrait reveas
that all of the power in the noise is conveniently focused in six localized high spatia frequencies
(actualy three and their reflections through the origin). One could remove these and all higher
frequencies by performing a low pass operation on the power spectrum, but since the noise
spikes are localized and of large amplitude, the Threshold Zero operation can be used to remove
them more selectively. Thisis done by enabling thresholding and adjusting the threshold interval
until only the noise spikes are highlighted. Using Threshold Zero then removes these spatia
frequencies and the power spectrum appears as in Figure 12c. Inverse transformation finally
gives the restored image in Figure 12d, which has been contrast enhanced to fill the dynamic
range of the 8 bit pixels. While the noise dominates the signal in Figure 123, its remova in
Figure 12d reveals a very clean portrait.

By having a spectrum made up of delta functions at high frequencies, the noise in this
example was unusualy well behaved. In practice noise spectra will not be as localized and may
interfere more directly with the spatia frequencies of interest. Even so, the spatia filtering

technique iswidely used in image restoration [19].

56

Figure 12: Spatial Filtering Example.(a) Image corrupted by noise. (b) Power spectrum of the
Fourier transform of a, showing noise spikes. (c) Power spectrum after remova of noise spikes
with Threshold Zeroing. (d) Inverse Fourier transform of ¢, showing restored image.

57

58

Motion Blur Removal Using Deconvolution

Figure 13a shows an image exhibiting a horizontal blurring similar to that obtained when
photographing a quickly moving object with a dow shutter speed. As the planetary probe
Voyager ventured to the outer planets, the waning sunlight demanded longer exposure times and
such motion blur affected every image recorded. Fortunately, if the nature of the motion is
known and the object being imaged is at a constant distance from the camera (a good
approximation for planetary imaging), motion blurring can be easily corrected.

Motion blur can be modeled as the convolution of the image with aline whose length and ori-
entation reflect the camera's shutter speed and the object’s direction of motion, respectively
(Figure 13a was generated by convolving the original image with a horizontal line 13 pixels
long). Since convolving in the space domain corresponds to multiplying in the frequency
domain, the Fourier transform of the undegraded image is multiplied by the Fourier transform of
the line to produce the power spectrum of Figure 13b. The spacing and orientation of the zeroes
of Figure 13b belie the length and orientation of the blurring line, alowing one to generate its
Fourier transform independently. Dividing the Fourier transform corresponding to Figure 13b by
the Fourier transform of the blurring line gives the power spectrum of Figure 13c. Although
some of the original power spectrum is lost, inverse transformation shows this deconvolution
operation successfully restores the origina image in Figure 13d.

Note that the vertically oriented zeros of the blurring line's power spectrum would cause the
guotient transform of Figure 13c to ‘blow up’ aong these lines. Normally, the inverse filter is
apodized to avoid this effect. With the limited dynamic range of our integer calculations, these
singular quotients occur more frequently than when rea numbers are used and consequently
more of the quotient transform is lost (the white area in Figure 13c). While this limits the use of

deconvolution in Image, it is still of practical use as this example shows.

Figure 13: Deconvolution Example. (a) Motion blurred image. (b) Power spectrum of Fourier
transform of a. (c) Power spectrum of quotient of Fourier transform corresponding to b and
Fourier transform of blurring line. (d) Inverse transform of ¢, showing successful restoration

through deconvolution.

59

60

6.2 Image Enhancement

T4 Bacteriophage Tail Structure

The T4 bacteriophage shown in Figure 14a ‘represents the extreme in structural complexity
among bacterial viruses and has been widely studied by biologists [29]. Itstail structure, a detall
of which is shown Figure 14b, has been modeled as a tube of helicaly interwoven proteins. The
structure gpparent in most TEM images, however, makes the T4 tail appear like a stack of disks
viewed on edge. Consequently, the power spectrum of Figure 14b, shown in Figure 14c, is
dominated by the frequency of the disk spacing. Since both the image and its power spectrum
are spatialy calibrated, Image alows one to easily establish that the disk spacing is 3.9 nm by
simply moving the mouse cursor over the power spectral peaks (more detail on this may be found
in Appendix A).

Also discernible in the power spectrum of Figure 14c are spectral features of frequency
similar to the disk spacing, but oriented at an angle. These have been enhanced in Figure 14d by
multiplying all other spatia frequencies by a factor of 0.25 using Image's Pass operation
(Appendix A). Inverse transformation yields Figure 14e, which more clearly reveds the helica
structure of the T4 tail.

While the emphasis of specific spatial frequencies has been used to advantage here, it should
be emphasized that this technique can be exploited to provide ‘enhancements' that are unredlistic.
Microscopists generally emphasize or filter out complete annuli in the frequency domain,
avoiding the preferential treatment otherwise given to spatial frequencies of a particular

orientation. This technique may also be easily applied using Image’s FFT extensions.

Figure 14: T4 Bacteriophage Tail Structure Enhancement. (a) Image of T4 bacteriophage
virus. (b) Detall of the ‘tail’ of a T4 bacteriophage. (c) Power spectrum of Fourier transform of
b, showing spectral peaks corresponding to horizontal spacing dominant in b. (d) Same as c,
but selected spectral peaks are emphasized by multiplying al other spatia frequencies by 0.25.
(e) Inverse transform of d, showing enhanced helical structure of T4 bacteriophage tail.

61

62

Myofibril Structure

Skeletal muscle is made up of long, thin cells each containing many myofibrils. Myofibrilsin
turn contain long myocin and actin molecules forming a regular bundles of thick and thin fila-
ments, respectively. When a skeletal muscle cell is viewed in cross section, asin the TEM image
of Figure 15a, the regular arrangement of the thick filaments becomes apparent only after some
scrutiny. The regularly spaced spectral features of Figure 15a's power spectrum, shown in
Figure 15D, reveal that thereisin fact agreat deal of regular structure in the original image.

Using the Threshold Zero and Filter operations, the dominant peaks of the power spectrum in
Figure 15b are isolated, producing the power spectrum in Figure 15¢c. The inner ring of six spec-
tral peaks corresponds to the regular thick filament spacing, while the outer ring corresponds to
the higher frequency thin filament spacing. The inverse transform of this modified power spec-
trum is shown in Figure 15d, revealing the basic periodic structure of Figure 15a, including that

of the thin filaments which could not be seen in the origina image.

Figure 15: Myofibril Structure. (a) TEM image of myofibril cross section. (b) Power spectrum
of a, showing spectral features indicating a high degree of regular structure. (c) Modified power
spectrum in which the spectral peaks of b have been isolated by using the Threshold Zero and
Filter operations. (d) Inverse transform of c, revealing the basic periodic structure of the my-
ofibril cross section. Inset shows the hexagona arrangement of thick and thin filaments.

63

64

6.3 Pattern Recognition

Using Cross Correlation for Matched Filtering

A simple form of pattern recognition can be employed by using Image’s capability to cross
correlate two images. In Figure 16a and 16b, a sequence of letters and the power spectrum of
their Fourier transform are shown, respectively. Figures 16¢ and 16d likewise show the letter *J
and the power spectrum of its Fourier transform. Calling the Fourier transforms corresponding
to Figures 16b and 16d A and B respectively, the power spectrum of their conjugate product,
AB”, is shown in Figure 16f. Figure 16e is the inverse transform of 16f and therefore the cross
correlation of Figures 16a and 16c.

In the space domain, the cross correlation process can be viewed as diding the image of J
over the other letters and noting at each offset how well the two images match. Since they
match best only at the offset where the two J images exactly overlap, the cross correlation
function is maximized at this point. This matched filtering technique can be used in pattern
recognition applications but is very sendtive variations in image orientation and scale.
Furthermore, had ‘I’ been used instead of ‘J, the cross correlation function would have had

severa maxima of equal amplitude where the ‘I’ matched the vertical components of other letters

(eg.‘H).

Figure 16: Correlation Example. (a) Image of letters. (b) Power spectrum of the Fourier
transform of a. (c) Image of ‘J. (d) Power spectrum of the Fourier transform of c. (f) Power
spectrum of the conjugate product of the Fourier transforms corresponding to b and d.
(e) Inverse transform of f, the cross correlation of a and ¢, showing a maximum where the two

‘J s coincide.

65

7. CONCLUSION

The combination of an appropriate algorithm, integer arithmetic and careful coding in 68000
assembly language has reduced the execution time required for FFT calculations to the point that
they can be conveniently used in image processing applications on a mere Macintosh I1I. Thein-
corporation of this capability into Image has made these capabilities available to everyone in the
public domain. Professionals and students alike can profit from using Image’s new capabilities,
whether it be for real image processing applications or simply to develop a better understanding

of the frequency domain and its uses.

7.1 Future Development

Aswith any large project, there is much more work that can be done.

Efficient alternatives to the simple up/down rounding scheme were not explored and deserve
further study. The stage aternate rounding technique is particularly promising [26] and should
be quantitatively compared to other rounding schemes.

Further research into agorithms could also produce better candidates for 68000 implementa-
tion. Split-radix techniques are very attractive since they provide both compact size and
minimum operation counts. As processors evolve, the finite register set limitation also becomes
less stringent. For example, the 68040 processor has a 4K on chip data cache providing access
speed approaching that of registers. Such an environment could be used to exploit the
advantages of the larger and more complex algorithms like vector radix techniques. Many
promising hybrid techniques have been also developed and deserve attention. These include a
split-radix FHT, a split-vector radix FFT [30,31] and avector-radix FHT [32].

Image should also support saving the FHTBuffer to disk as well as its power spectrum. The
ability to view and alter the amplitude and phase of images should also be supported. Finaly, the
dyadic frequency domain operations deserve optimization, since their speed could doubled with-

out too much difficulty.

67

APPENDIX A
FFT EXTENSIONSTO IMAGE 1.25

Described herein are the extensions to Image 1.25 alowing frequency domain (power spec-
trum) display and editing of gray scale images. A description of each menu item and dialog box
isfollowed below by a Quick Reference. If you have experience with earlier versions of this pro-
gram or are Ssmply ambitious, you may wish to skip ahead to the Quick Reference section which

summarizes important key-combinations necessary to make full use of Image’'s new capability.

The addition of FFT capability to Image has added one menu to the program:

FFT
FFT £
Inverse FFT #0

Automatically Filter
FFT S5ettings... +~Pass T
Dyadic FD Ops... Threshold Zero
Filter Mask

Pass

Threshold Zero

Mask

M & F Settings... 3*¥p

Update P5 EN
Block Swap

FFT

The FFT menu item is enabled if the current selection isavalid FFT-able selection. Currently
only square regions which are an integer power of 2 in size are FFT-able (the FFT Settings

dialog box has a ‘ continuous selection size' setting, but that is not yet supported). Selections of

69

70

this size are made most easily by holding down the command key while making a selection with
the rectangle selection tool.

When the FFT is computed, the power spectrum is displayed in a new window (titled ‘FFT #
where # increases serially from 1) with a dashed title bar. This title bar indicates that the window
is a frequency domain window and that different editing rules apply. No cutting or pasting is al-
lowed in a frequency domain window, but its contents may be copied and pasted into a space do-
main window. Frequency domain editing is limited to the operations Filter, Pass and Threshold
Zero (described below), and selections may only be made with the rectangle, oval and rounded
rectangle tools. Furthermore, these tools behave differently than in the space domain as is de-
scribed below under ‘Making Selections In the Frequency Domain’.

During the FFT computation, the portion of the image being transformed is displayed in the
newly created frequency domain window. |f automatic masking (described below) is enabled, a
masked version of the original image will appear in the frequency domain window while the com-
putation istaking place.

Once the FFT computation is complete and the power spectrum is displayed in the new fre-
guency domain window, the results window shows the mouse location in a new format. If the
mouse is over an active frequency domain window, its location is displayed in polar coordinates.
The angle is expressed in degrees (°), while the radius is expressed in either pixels per cycle (p/c)
or, if aspatial scale calibration has been made using Set Scale..., in [units] per cycle (e.g. mm/c).

The contents of frequency domain windows can be saved as normal space domain images, the
ability to save inverse-transformable power spectrais not yet supported.

The key-equivalent for FFT is Command-Option-F.

An Important Aside: Making Selectionsin the Frequency Domain

Sdections in the frequency domain can be made with the rectangle, oval and rounded
rectangle selection tools (the polygon and freehand selection tools will eventually be supported
aswell). These selection tools behave differently in the frequency domain because the frequency

domain is radialy symmetric and therefore redundant. When a selection is made with one of

71

these tools, the effective selection is the union of the original selection with its reflection through
the origin. The ‘marching ants marquee portrays this graphically as you make the selection.

It is often desirable to center the selection on the origin and this can be done by pressing the
command key while making the selection. As in the space domain, pressing the shift key during
selection congtrains the selection to have equal width and height. Finally, if you want to make
complex selections, the active selection, or ‘region of interest’, can be added to and subtracted
from using the same technique as in the space domain: To subtract a region from the currently
active region, hold down the option key while making a new selection; when you' re done it will
be subtracted from the current region. Do the same while holding down the control key if you
want to add to the current selection. It might seem complicated at first using e.g. option-
command-shift to subtract a centered square region from the current region of interest, but after
a while you'll get the hang of it. All the key combinations are summarized in the Quick
Reference below, so you might want to print that page out and keep it around while you're

learning.

Inverse FFT

The inverse FFT menu item is enabled when a frequency domain window is front-most.
When the inverse FFT is computed, the inverse transform is displayed in a new space domain
window with title ‘| FFT # where # increases serially from 1. During the inverse FFT computa
tion, a copy of the power spectrum of the original transform is displayed in this window. If au-
tomatic Filtering, Passing or Threshold Zeroing (described below) are enabled, the copy of the
power spectrum displayed will reflect these operations.

The key-equivalent for Inverse FFT is Command-Option-Shift F.

Automatically

The *Automatically’ sub-menu allows one to turn automatic Filtering, Passing, Threshold
Zeroing and Masking on and off. The first three operations are used in Inverse FFTs, while
Masking is used in forward FFTs. All four of these operations can either be done in place using

the menu items in the main FFT menu or they can be done automatically to the copy generated

72

during the transform process. By doing these operations automatically, the original copy of the

image or power spectrum remains unchanged, eliminating the need to restore or re-compute it.

FFT Settings...

Choosing FFT Settings... brings up the following dialog box:

FFT Configuration
FFT

i Discrete Selection Size
Ty Continuous Selection Size

@ Allocate New FFT Buffer
{_» Use Undo & Clipboard memory

[<] Mean Zero

[] Pad with 2ero

[] Pad with Average
Power Spectrum

P5 Scaling:| MNth Root

(<] Clip output to [1..254]

Discrete & Continuous Selection Size

The first radio button pair allows one to choose between discrete and continuous selection
sizes. Currently, only discrete selection sizes are supported, but a new version due out ‘any time

now’ will allow square selections of any size to be transformed.

Allocate New FFT Buffer / Use Undo & Clipboard memory

The second radio button pair is only to be used by those with severe memory constraints

(those with only 2 Megabytes of memory, for example). Normally, Image will try to alocate a

73
new power spectrum buffer for every new frequency domain window it creates, but if you
choose ‘Use Undo & Clipboard memory’, the power spectrum will be computed in the memory
normally reserved for the Clipboard and Undo buffer. This alows those with only 2M to
compute larger transforms, but the power spectra generated in this way cannot be Inverse

transformed, filtered or updated (re-computed).

Mean Zero

Mean Zero before FFT, when enabled, will cause the mean of the image being transformed to
be computed and subtracted from the copy of the image being transformed. This effectively re-
moves the DC component (the central pixel) of the transform and, because this component can

otherwise dominate the power spectrum, improve the overall scaling.

Pad with Zero / Pad with Average

When computing the convolution or correlation of two images by performing dyadic fre-
guency domain operations (described below), one may choose to pad the data to be transformed.
When this option is enabled, the transform window will be twice the size (four times the area) of
the original transform selection; during the transform computation, the selection will appear in
the upper left quadrant of the new frequency domain window. If zero padding is enabled, the
other three quadrants will be filled with zeros, while if average padding is enabled, they will be
filled with the average value of the selection. Zero padding is necessary if the convolution of two
images is to be subsequently sought; without zero padding, the cyclic, or circular, convolution
will result. Likewise, padding is necessary for the correlation and autocorrelation operations,

however, in this case more detail is brought out if the data is padded with its average value.

Power Spectrum Scaling

Power spectra are normally log-scaled, but this scaling sometimes brings out more spectral
detail at low spatial frequencies than isdesired. For this reason, Nth Root scaling, for N in [2..9]
and Linear scaling are aso supported. After the scaling has been changed using this pop-up
menu, the power spectrum displayed in the front-most frequency domain window can be updated
to reflect this scaling with the Update PS menu item.

74

Clip Output to [1..254]

When the power spectrum is computed, it normally is scaled to fill the output range [0..255].
Thresholding, however, allows the user to threshold only pixelsin the range [1..254]. Therefore,
if the user wants to use Threshold Zero (described below), he will be able to threshold any por-

tion of the power spectrum when *Clip Output to [1..254]" was enabled prior to the last power

spectrum update.

All FFT Settings can be recorded permanently by choosing the ‘Record Preferences menu

item in the file menu.

Dyadic FD Ops...

New in this version of image is the support of Dyadic Frequency Domain Operations. With

them, Image is now capable computing convolutions, deconvolutions, correlations and

autocorrelations.

A
CRA+B
o || O
FFT 4 64 i+ AB
IR/ B
| @ AB*

Output IWindow:

Dyadic Frequency Domain Operations

FFT1 64
FFT 2 64

FFT 4 64

FFT 3 64

o

[<] Automatically Compute Inverse FFT

I (FFT 1 & FFT 3*)

[Cancel]

When a frequency domain window is open, this menu item is enabled and choosing it will
bring up the dialog box above. The titles of the currently open frequency domain windows

appear in two ligts, followed by their width (=height) in pixels (Dyadic operations are alowed

75

only on images of equa dimensions). Between these two lists, five radio buttons alow one to
select the frequency domain operation desired. In addition to the four common operations,
conjugate multiplication is also supported for correlation computations.

The result of the dyadic frequency domain operation appears in a new window, the title of
which may be entered into the Output Window field. A default title generated from the

selectionsis provided until one types or clicksin thisfield.

Automatically Compute Inverse FFT

Often one is more interested in the inverse transform of a dyadic frequency domain operation
than in the transform itself. When this is the case, the inverse transform can be automatically
computed from the result of the frequency domain operation by enabling thisitem. The new win-
dow created by the operation is then a space domain window which, during the inverse transform
computation, displays the power spectrum of the dyadic operation’s result. Not only does this
proceed automatically, but it spares the memory otherwise used by the intermediate frequency

domain window and its buffer.

Addition and Subtraction

The addition and subtraction operations in the frequency domain are equivalent to those in
the space domain. They therefore do not hold much interest except to verify the linearity of the

transform process. Still, they are included here for compl eteness.

Multiplication (Convolution)

Multiplication in the frequency domain trandates to convolution in the space domain; two im-
ages can be convolved by transforming each of them, multiplying their transforms and inverse
transforming the result. While the same computation can be done directly in the space domain
using Image’s convolution feature, the space domain kernels must be typed in as text files and
are limited in size to 63x63. Using the frequency domain operation removes the size restriction
and alows one to draw the convolution kernels using Image’s drawing tools. While the set of
practica applications that demand this new flexibility may be small, the process is a great

educational tool.

76

If data padding (see FFT Settings... above) is disabled, the inverse transform of the product
of two transforms will produce the cyclic convolution of the two original images. This arises
from the sampling-induced periodicity of the image plane. Since the Fourier transform of a sam-
pled image is equivalent to the transform of an infinite periodic replication of the image, the
shifting inherent in the convolution operation results in the image overlapping its periodic
extenson. This creates a circular convolution and the wrap around affect can be easily seen by
experimenting with this operation.

In order to produce normal, not circular, convolution, one can avoid the overlap artifact by
padding the image to be convolved with zeros. Unlike the autocorrelation function, however,
convolution is sengitive to the placement of the extra zeros. By placing them to the lower right

(see description under FFT Settings...), no artificial trandation is induced.

Division (Deconvolution)

Division in the frequency domain corresponds to deconvolution in the space domain and
serves as the inverse of the multiplication (convolution) operation. For example, if one first mul-
tiplies the transforms FFT1 and FFT2 together, leaving the result in a new frequency domain
window, FFT1 x FFT2, and then divides this spectrum by either FFT1 or FFT2, the complemen-
tary FFT results. Unfortunately, however, the nature of the division operation creates output
with a wide dynamic range (not to mention some singularities) that cannot be fully
accommodated by the 16 bit integer arithmetic used throughout these routines. Consequently,
often large portions of the quotient transform are lost and the resulting inverse transform suffers
accordingly. While this limits the practical use of this deconvolution operation, it is nonetheless
impressive to see how well the origina object can be recovered from its image when one knows

the point spread function with which it was convolved.

Conjugate Multiplication (Correlation)

Conjugate multiplication in the frequency domain trandates to correlation in the space
domain. The wide use of correlation and autocorrelation operations in imaging science makes

this perhaps the most important dyadic frequency domain operation supported by Image.

77

The best way to compute the autocorrelation of an image is to select ‘Pad with Average' in
FFT Settings before Fourier transforming. This accomplishes two things. First, data padding
avoids the characteristic wrap around affect to which correlation, like convolution, is subject.
Second, by padding the data with its average value instead of with zeros, more detail is brought
out in the autocorrelation function. By padding with zeros, the extended data looks like a modu-
lated rectangle function. In the autocorrelation operation, the signature of the rect function
dominates over that of the modulation (your data). By padding with the average value of the
data, this rect function autocorrelation signature is removed and the autocorrelation features of
the data stand out.

Finally, the result of the autocorrelation operation produces an image that is inherently ‘block
swapped’ or in its ‘wragp around state. If you prefer the more common ‘un-swapped’
representation of the data, it can be rearranged using the Block Swap menu item described
below.

Like the FFT Settings, the preferred Dyadic Operation settings can be recorded permanently

using ‘ Record Preferences!’

Filter & Pass

Once aregion is selected in the frequency domain, these menu items become enabled and the
selection can be either Filtered or Passed. ‘Filter’ removes or suppresses the spatia frequencies
in the current selection while ‘Pass’ performs the complementary operation. The details of these

operations are described under ‘Mask & Filter Settings...” below.

Threshold Zero

Another means of frequency domain editing is provided by the Threshold Zero operation.
When thresholding in the frequency domain, this menu item is enabled and alows one to select,
by using the LUT tool to manipulate the threshold ‘density dlice’, which part of the power spec-
trum to filter out. Choosing Threshold Zero will zero out all parts of the power spectrum within
the thresholding interval (colored red by default). A typical application of this would be to

remove all components of the power spectrum except the most dominant peaks.

78

In order to make the entire power spectrum fall within the threshold-able interval [1..254],
the ‘Clip Output to [1..254]" option in the FFT Settings dialog box should be enabled.

Like the Filter and Pass operations, Threshold Zeroing can be performed automatically on in-
verse transformation to avoid permanent (non-undoable) ateration of the origina power

spectrum.

Mask

Masking is the space domain analog of Passing: when Masked, an image selection is given a
smooth transition to zero at its edges. In contrast to Passing, however, masking is less flexible
because it is only enabled for rectangular selections in the space domain and regions inside the
mask transition region are passed completely while those outside are zeroed completely.

Why use masking? The discrete two dimensiona Fourier transform of an image is effectively
the transform of the periodic extension of the image. Tiling the image in the plane can give rise
to sharp edges where the right (top) edge of the image meets the left (bottom) edge of its
periodic extension. This in turn increases the image's power spectral density in the horizonta
and vertical directions; in extreme cases the power spectrum of an unmasked image can be
dominated by this cross shaped signature. By masking, however, one guarantees that an image’s
periodic extenson has no sharp edge discontinuities, effectively removing the cross-shaped
artifact from the power spectrum. Be aware, however: masking (multiplying) in the space
domain is equivaent to convolving in the frequency domain; by masking an image, you are
convolving its transform with the transform of the mask, which can aso have undesirable effects.
In general, masking is used to remove the cross from a power spectrum; if the power spectrum is
to be modified and inverse transformed, masking is not used.

Like Filtering, Passing and Threshold Zeroing, Masking can be done automatically during the
forward FFT, eliminating the need modify the original image. Unlike the other operations, how-

ever, masking is undoable.

Mask & Filter Settings...

Choosing ‘M & F Settings...” brings up the following dialog box:

Transition Type

(® Gaussian s Linear

Transition $ize & Hange

FFT
Percent Width: 30
Inverse FFT
Pizel Width: [10|
Minimum Level: 0
Marimum Level: 100

Mask and Filter Configuration

{1 Cosine _y Parabolic

%

pidels
o
o

[Cancel]

Transition Type

79

Both the space domain operation Mask as well as the frequency domain operations Filter and

Pass support the four different transition types shown below:

Coszine

Parabolic

Gaussian

0%

80
These are the trangitions that Masks or Filters take from full scale to zero. Both the space
and frequency domain images are atered by such Masks and Filters using a multiply operation;

each pixel in the trangition region is reduced in proportion to the transition function at that point.

Percent Width

For Masking, the width of the transition region is specified as a proportion of the minimum
dimension of the selection rectangle, denoted Percent Width. A Percent Width of 100% will set
the width of the transition region to half of the minimum dimension of the selection rectangle and
the entire region inside the rectangle will be altered by the mask. Any percent width in [0..100%)]
can be entered inthe M & F Settings dialog box.

Pixel Width, Minimum & Maximum L eve

Since the Filter and Pass operations can be applied to much more complicated regions in the
frequency domain, the transition width is specified in pixelsinstead. Furthermore, since it may be
desirable to suppress, instead of completely eliminate, particular spatial frequencies, you can
gpecify a maximum and minimum level of the transition function.

For example, if the user wants to suppress al spatial frequencies outside the selection by 50%
while completely passing all spatial frequencies within the selection, he can set the transition pixel
width to 0, the minimum level to 50%, the maximum level to 100% and use the Pass operation.

A graphical representation of a Pass and Filter mask cross section is shown below:

81

100%

Pass Mazk
R R

FMazirmur Lewel -

Filter Mask

Minirum Lewvel - ——-“/

Gaussian
Transition

Pixel Width

Selection wWidth

The key equivaent for Mask and Filter Settings is Command-Option-M.

All Mask & Filter Settings can be recorded permanently by choosing the ‘Record

Preferences menu item in the file menu.

Update PS

At any time a frequency domain window is front-most, its power spectrum can be re-com-
puted using Update PS. If, however, the power spectrum was computed using the ‘Use Undo &
Clipboard memory’ option enabled, the power spectrum cannot be re-computed because the
memory used in the original power spectrum computation has likely been corrupted by Undo and
Clipboard operations.

Typically, Update PS is used to re-compute the power spectrum after the default scaling or
the ‘Clip Output to [1..254]" variables have changed.

The key equivaent for Update Power Spectrum is Command-Option-P.

82

Block Swap

Block swapping is enabled for space domain windows whose width and height are equal and
an integer power of two. This happens to include al windows produced by inverse Fourier
transformation. Why Block Swap? What is Block Swap?

Block Swapping (I'm sure it has a more official name) is performed automaticaly every time
a power spectrum is computed. If you think of an image’' s origin as being at its geometric center,
block swapping smply swaps quadrant 1 of the image with quadrant 3; likewise for quadrants 2
and 4. In the normal, un-swapped, state, the power spectrum’s central peak is distributed among
the four corners of the image matrix. While thisisthe format used in all computations, it doesn’t
correspond to nature’s FFT analog, the diffraction pattern, so most spectra are block swapped
before display. This menu item alows block swapping for space domain windows only,
however, because it is useful in two other contexts.

First, convolution kernels are typically arranged in a block swapped or ‘wrap around’ state.
This puts the maximum of the kernel at matrix index 0,0 (upper left corner) so that convolving
with the kernel will not result in atrandation. Second, the cross and auto-correlation operations
result in inherently un-swapped space domain images, yet like power spectra, correlation func-
tions are often displayed in block swapped format. The Block Swap menu item lets you choose

the format you desire.

83

FFT QUICK REFERENCE

Space Domain

» With the rectangle selection tool, hold down the command key to make a square selec-
tion an integer power of 2 in size.

» To make the largest FFT selection allowable in the current window, hold down the
command key while double clicking the rectangle selection tool.

» Masking vignettes a rectangular image selection so that it has a smooth transition to
zero at its edges.

» Automatic Masking, when enabled, will cause the copy of the image selection used in
computing the FFT to be masked, leaving the original selection unchanged.

Frequency Domain

» Only the rectangle, oval and rounded rectangle selection tools allow selections to be
made (Some other tools work too, like the cross-section plot tool).

» Holding down the command key will center these selections on the origin.

» Holding down the shift key will constrain these selections to have equal height and
width (whether or not they are centered at the origin).

» Holding down the option key before making a new selection will cause it to be sub-
tracted from the current selection

» Holding down the control key before making a new selection will cause it to be added
to the current selection.

Filtering removes or suppresses the spatia frequenciesin the current selection.
Passing removes of suppresses the spatial frequencies outside the current selection.
Threshold Zeroing zeroes out all spatial frequencies within the current threshold den-
Sty dice.

Automatic Filtering, Passing and Threshold Zeroing performs these operations on the
copy of the power spectrum used in computing the Inverse FFT without altering the
original power spectrum.

» Update Power Spectrum re-computes the power spectrum to reflect the current scaling
default (chosen in FFT Settings).

Key Equivalents

o FFT Command-Option-F
* Inverse FFT Command-Shift-Option-F
* M & F S&ettings... Command-Option-M
» Update PS Command-Option-P

APPENDIX B
EXECUTION TIMESFOR THE FHT ROUTINE LIBRARY

N 512 KE Pl us SE SE 30 11 Il cx I'lci
64 10.3 10.3 8.9 2.2 2.5 2.1 1.4
128 24.5 24.5 21.2 5.1 5.7 5.1 3.3
256 57.4 57.4 49.7 11.9 13.0 11.9 7.6
512 132.0 131.8 114.3 27.2 29.5 27.3 17.2
1024 298.3 297.7 258. 7 61.3 66. 1 61.4 38.8

Table B1: FHT execution timesin milliseconds vs.
sequence length and Macintosh computer type.
Hei ght & Wdth of Inmage

Procedur e 32 64 128 256 512
Shi ft RowsR 1.7 7.8 30.6 120.0 480. 0
Bi t RevRows 1.7 6.7 28.3 122.2 487. 2
MeanZer o 37.2 45.0 73.9 188.9 651.1
Cl i pM nMax 2.2 8.3 35.0 140.6 564. 4
SwapBBI ock 0.6 1.7 7.8 31.1 123.9
Tr anspose 1.7 5.6 21.1 85.0 339.4
ToRCFHT 3.3 12.2 48. 3 189.4 753.3
Dbl Mem 1.7 6.1 25.6 103.9 415. 6
I nt ToByt eF 11.1 45. 6 182.2 729. 4 2917.8
PSFHT2D Li near 13.3 53.3 213.3 853.3 3406. 7
PSFHT2D 5t+ 16.7 63.3 253.3 1013.3 4043.3

Root

PSFHT2D Log 16.7 63.3 243.3 963. 3 3850.0

AddSub?2Buf sF 60.0 241. 7 965.0 3865. 0 15455.
0

Convol ve 161.1 644. 4 2577.8 10300. 41211.
0 1

Deconvol ve 211.1 844. 4 3377.8 13527. 54116.
8 7

Correl ate 166. 7 650.0 2605. 6 10422. 41688.
2 9

Table B2: Utility routine execution times in milliseconds
vs. image size for the Macintosh |1.

85

86

Hei ght & Wdth of Inmage

Procedur e 32 64 128 256 512
Shi ft RowsR 1.1 3.9 16.7 66. 1 262.2
Bi t RevRows 0.6 3.9 13.9 63.9 268.9
MeanZer o 22.2 26.1 41.1 100. 6 338.3
Cl i pM nMax 1.1 5.0 20.6 83.3 333.3
SwapBBI ock 0.6 1.7 6.1 23.9 95.6
Tr anspose 1.1 3.9 14. 4 57.8 232.8
ToRCFHT 2.2 8.3 31.1 123.3 490.0
Dbl Mem 1.1 3.9 15.0 59.4 238.3
I nt ToByt eF 7.8 31.1 125.0 498. 3 1995.0
PSFHT2D Li near 10.0 33.3 130.0 530.0 2113.3
PSFHT2D 5th 10.0 40.0 153.3 603. 3 2413.3
Root

PSFHT2D Log 10.0 36.7 146. 7 580. 0 2320.0
AddSub2Buf sF 35.0 140.0 560. 0 2240.0 8956. 7
Convol ve 88.9 372.2 1477.8 5894.4 23572.2
Deconvol ve 116.7 483. 3 1927.8 7694.4 30772.2
Correl ate 88. 9 372.2 1477. 8 5922.2 23683.3

Table B3: Utility routine execution times in milliseconds
vs. image size for the Macintosh I1ci.

APPENDIX C
USE WITH OTHER LANGUAGESAND OTHER 68000 SYSTEMS

The FHT code and many of the utility routines are written using generic 68000 instructions
and can be ported to any other 68000 based machine. For example, it would not take much
effort to bring these routines up on a 680x0 based Sun workstation.

Incompatibilities may exist for those utility routines that make use of the Macintosh I’ s float-
ing point unit. These routines (including PSFHT1D, PSFHT2D, IntToByteF, AddSub2BufsF &
Hcdc2BufsF) are clearly marked in the source listing in Appendix F. Based on their description
under ‘Details of the Utility Routines and the inline documentation, the enterprising individua
could easily write high level routines to perform the same functions.

Otherwise, dl of the code is written for a generic 68000 and should be very portable.

Pascal Calling Conventions

Because Image is written in Pascal, the FHT and utility routines expect to receive their pa
rameters on the stack in the format typical of Pascal on the Macintosh. Upon routine entry, the
top of the stack contains return address. The first operations typically performed by the routine
are @) aLINK to create a stack frame and allocate space on the stack for local varables, and b) to
save the contents of the 68000 registers changed by the routine by pushing them on the stack.

This leaves the stack in the state shown in Figure C1.

Previ ous Stack Contents

Function Result (if any)
First paraneter
Second Par anet er

8(A6) A i_ast Par anet er
4(A6) A| Return Address
(A6) A&| Previous (A6)

Local Vari abl es

Saved Registers

(A7) A

Figure C1: Stack Frame.

87

88

Any of the routines listed in Appendix F can be used to develop an understanding of Pascal
calling conventions, as the routine entry and exit sequence is uniform throughout the code and
reflects the conventions outlined in Inside Macintosh, Volume 1, Chapter 4 [28]. Furthermore, if
one understands the calling conventions of one's preferred language, it may be possible to use

the routine library from that language with little or no change to the assembly source code.

APPENDIX D
RESOURCE FORMATS

BREV

The custom Macintosh resource type ‘BREV’ was generated for use with the FHT routines
to speed the bit reversal operation as described under ‘Details of the Utility Routines.” Itisa
lookup table consisting of a sequence of 16 bit words. The first word, N, is the number of swaps
necessary to bit reverse the sequence. Following this are N pairs of words which are the
addresses of data pairs to be swapped. Since all operations are on two byte words, the addresses

are all even. Thisformat is shown here:

N

Swap 1 Address
Swap 1 Address
Swap 2 Address
Swap 2 Address

NN~

Swap N Address 1
Swap N Address 2

Figure D1: BREV resource format.

Since a unique BREV lookup table is required for each integer power of 2, instances of this re-
source for transform lengths in [64, 128, 256, 512, 1024, 2048] are provided. The resource ID
of each instance is its length plus 124. The BREV resource ID for N=64 is therefore 188. If

longer sequences are to be bit reversed, larger BREV tables must be generated.

TWID

The custom resource type TWID was generated to hold the twiddle factors necessary in the

computation of the FHT. It consists of a sequence of 32 bit longwords in the following format:

89

90

H gh Word Low Word
215+ cos(20/ 4096) 215%si n(2M0/ 4096)
215 cos(21/ 4096) 215%sin(2M1/ 4096)
215 cos(22/ 4096) 215%si n(2M2/ 4096)
215+ cos(23/ 4096) 215%si n(2M3/ 4096)
215% cos(281023/ 4096) 215+ 5j n(281023/ 4096)

Figure D2: TWID resource format.

This lookup table is 4K in size and can accommodate transforms up to 4K in length. If longer
transforms are to be calculated, then a larger TWID resource must be generated using this
format. In addition, the variable CSAdincr (for cosine/sine address increment) in source code for

FHT.a (Appendix F) must also be increased accordingly®.

45This can be done without reassembling the code by simply modifying the word at hex offset $126 in the
compiled code. For the current maximum transform length of 4K, this number is $0800 (2K). For a TWID
resource twice the size (accommodating transform lengths up to 8K), this number should be doubled to $1000
(4K).

APPENDIX E
THINK PASCAL SOURCE CODE

The complete Pascal source code for the FFT extensions to Image is not included here be-
cause it makes little sense out of the context of the rest of the Image source code. Since the
Image program is so large, the source code cannot be reproduced in its entirety here. When the
FFT extensions are permanently incorporated into the Image program, their source code will be
available via anonymous FTP from aw.nih.gov. Dartmouth community members can most easily
download files from this site using the Fetch application. Until that time, the source code for
Image and its FFT extentions may be obtained from Charles.Daghlian@mac.dartmouth.edu.

The rest of this Appendix includes two routines. The first implements the two dimensional
FHT agorithm, while the second is a real vaued FHT routine that can be used to test the

accuracy of the integer FHT routine in Appendix F.

RCFHT

RCFHT computes a two dimensional FHT using the 11 step algorithm outlined under ‘The
Fully Evolved Two Dimensional FHT Algorithm’. It appears here as implemented in Image and

makes use of several of the utility routines described under ‘ Details of the Utility Routines!’

function RCFHT(x: ptr;
rowwrds: integer;
var scale: integer): bool ean;

const
Checkl nterval = 64;

type
IntArr = array [0..0] of integer;
IntArrPtr = ~lntArr;

var
Bi t RevH, Twi dH. handl e;
shiftArr: IntArrPtr;
maxShift, r, ShiftMag, rowBytes: integer;
buf Si ze, offset: |ongint;

procedure CheckAndQuit;

begi n
i f CommandPeriod then
begi n
HUnl ock(Handl e(Bi t RevH));
HUnl ock(Handl e(Twi dH)) ;
Di spose(ptr(shiftArr));
exi t (RCFHT) ;
end;
end;

begi n
RCFHT : = fal se;
shiftArr := IntArrPtr(NewPtr(BSL(rowdrds, 1)));
buf Si ze : = | ongi nt (rowrds) * rowrds;

91

92

Bi t RevH : = Get Resource(' BREV' , rowérds + 124);
Twi dH : = Get Resource(' TWD , 129);
if (TWdH =nil) or (BitRevH = nil) then
begi n
Put Message(' NIL resource handles in RCFHT9', "', "');
exi t (RCFHT) ;
end;
H ock(Handl e(Bi t RevH)) ;
Bi t RevRows(x, rowwrds, BitRevH‘);
rowBytes : = rowrds + rowrds;
maxShift := 0;
of fset := 0;
H ock(Handl e(Twi dH)) ;
for r := 0 to rowwrds - 1 do

begi n
ShiftArr~[r] := FHT(ptr(ord4(x) + offset), rowwbrds, Twi dH);
offset := offset + rowBytes;

if ShiftArr~r] > maxShift then
maxShift := ShiftArr~[r];
if (r mod Checklinterval = 0) then
CheckAndQui t;
end;
scal e := nmaxShift;
Shi ft RowsR(x, rowwrds, maxShift, ptr(shiftArr));
transpose(x, rowrds);
Bi t RevRows(x, rowwrds, BitRevH‘);
HUnl ock(Handl e(Bi t RevH)) ;
maxShift := 0;
of fset := 0;
for r := 0 to rowwrds - 1 do
begi n
ShiftArr~[r] := FHT(ptr(ord4(x) + offset), rowwrds, Twi dH);
offset := offset + rowBytes;
if ShiftArr~[r] > maxShift then
maxShift := ShiftArr”[r];
if (r nmod Checklinterval = 0) then
CheckAndQui t;
end;
scale := scale + maxShift;
HUnl ock(Handl e(Twi dH)) ;
Shi ft RowsR(x, rowwrds, maxShift, ptr(shiftArr));
transpose(x, rowrds);
TORCFHT(x, rowrds);
Di spose(ptr(shiftArr));
RCFHT : = true;
end; { RCFHT }

DFHT

DFHT is a high level implementation of the FHT, included here for those who want more
than just assembly source. Thisimplementation is not particularly beautiful, but its structure (and
variable names) is smilar to that used in the assembly language implementation. Namely, the
first two stages are joined in one stage of radix 4 butterflies and the first butterfly of each
subsequent group is computed without multiplications. Further optimizations are not

implemented here.

const
maxStore = 4096;
maxSt oreLessl = 4095;

type
rArr = array[O..maxStoreLess1l] of real;
rArrPtr = ~rArr;

procedure df ht(var x: rArr;
i nverse: bool ean);
{ an optimzed real FHT }

var
i, stage, gpNum gplndex, gpSize, nunps, N og2: integer;
bf Num nunBfs: integer;
AdO, Adl, Ad2, Ad3, Ad4, CSAd: integer;

C S rArPtr;
rtl, rt2, rt3, rt4: real;
theta, dTheta: real;

begi n
if maxN < 4 then
begi n
writel n(' Sequence Length nmust be >= 4 in Fast FHT');
Exi t ToShel | ;
end;

C:
S

rArrPtr(NewPtr(SizeOf (rArr)));
rArrPtr(NewPtr(SizeOf (rArr))); { Should Check for NIL pointer here }

theta := 0;
dTheta := 2 * pi / maxN
for i :=0tomxNdiv 4 - 1do
begi n
CMi]
S
theta :
end;

cos(theta);
sin(theta);
theta + dThet a;

N og2 := | og2(naxN);
Bit RevRArr(x, N og2); { bitReverse the input array }

gpSize := 2; { first & second stages - do radix 4 butterflies once thru }
nuns := maxN div 4;
for gpNum:= 0 to nunms - 1 do
begi n
Adl := gpNum * 4;
Ad2 = Adl + 1,
Ad3 := Adl + gpSi ze;
Ad4 := Ad2 + gpSi ze;
rtl := x[Ad1l] + x[Ad2]; { a + b}
rt2 := x[Ad1] - x[Ad2]; { a - b}
rt3 := x[Ad3] + x[Ad4]; { c +d}
rt4 := x[Ad3] - x[Ad4]; { c - d}
x[Ad1] :=rtl + rt3; {a+b+(c+d)}
x[Ad2] :=rt2 + rté4; {a-b+(c-4d)}
X[Ad3] :=rtl - rt3; {a+b- (c+d)}
x[Ad4] :=7rt2 - rt4; {a-b-(c-4d)}
end;

if NNog2 > 2 then
begin { third + stages conputed here }

gpSi ze :

nunBfs : |

nun®s := nunps div 2;

for stage := 2 to Nog2 - 1 do

begi n
for gpNum:= 0 to nun3s - 1 do
begi n

AdO :
Adl :

4;
2

gpNum * gpSi ze * 2;
AdO; { 1st butterfly is different fromothers - no mults
needed }
Adl + gpSi ze;
Adl + gpSize div 2;
Ad4 := Ad3 + gpSi ze;
rtl := x[Ad1];
x[Ad1] := x[Adl] + x[Ad2];
x[Ad2] :=rtl - x[Ad2];
rtl := x[Ad3];
x[Ad3] := X[Ad3] + x[Ad4];
x[Ad4] : = rtl - X[Ad4];
for bfNum:=1 to nunBfs - 1 do
begi n { subsequent BF's dealt with together }
Ad1 bf Num + AdO;
Ad2 : Adl + gpSi ze;
Ad3 := gpSize - bf Num + AdO;
Ad4 := Ad3 + gpSi ze;

Ad2 :
Ad3 :

CSAd : = bf Num* nun(s;
rtl := x[Ad2] * C CSAd] + x[Ad4] * SM[CSAd];
rt2 := x[Ad4] * C CSAd] - x[Ad2] * SM[CSAd];

x[Ad2]
x[Ad1]
x[Ad4]
x[Ad3]

x[Ad1] - rt1;
x[Ad1] + rt1;
x[Ad3] + rt2;
x[Ad3] - rt2;

end; { for bfNum:=0to ... }
end; { for gpNum:= 0 to ... }
gpSi ze gpSi ze * 2;
nunBf s : nunBfs * 2;
nun®s := nunps div 2;
end;
end; { if }

94

if inverse then
for i := 0 to maxN essl do
x[i] :=x[i] I maxN

di spose(ptr(Q));
di spose(ptr(S));
end;

APPENDIX F
M C68000 ASSEMBLY LANGUAGE SOURCE CODE

Included here are the Macintosh Programmer’s Workshop assembly source files for the FHT
routine, FHT.a, and the utility routines, FHTUtils.a. No macros or special assembler directives

were used in writing to code to make it as portable as possible to other assemblers and 68000

systems.
FHT.a
PRI NT CFF
I NCLUDE "Traps. a'
PRI NT ON
TITLE "FHT. &'

STRI NG ASI S

This file contains a 68000 assenbly | anguage inplenentation of the
Fast Hartley Transform al gorithmwhich is covered under United States
Pat ent Nunber 4, 646, 256.

This code nay therefore be freely used and distributed only under the
foll owi ng conditions:

1) This header is included in every copy of the code; and
2) The code is used for nonconmercial research purposes only.

Firms using this code for commercial purposes will be infringing a United
States patent and shoul d contact the

; O fice of Technol ogy Licensing
| Stanford University

| 857 Serra Street, 2nd Fl oor

; Stanford, CA 94305-6225

; (415) 723 0651

Questions about the inplementation of this routine can be directed to nme at:

Until 4/15/90: Arlo Reeves
Thayer School of Engineering
Dart mout h Col | ege
Hanover, NH 03755
(603) 643 9076
Bl TNET: arl o@mc. dart nout h. edu

Per manent | y: Box 345
Mendoci no, CA 95460
(707) 937 5686

FHT PROC EXPORT
function FHT(baseAddr: ptr;
r owr ds: i nteger;
Twi dThl : ptr): ShiftTotal; (integer)

; This routine performs a sinple decimation in time Radix 2 Fast Hartley Transform
; baseAddr is a pointer to an array of words which is rowrds |long. These

; integers nust fall in the range [-8192..8191] because 2 bits of overflow can

; occur before any block floating point scaling is perforned; the output is also

; limted to a 14 bit dynam c range.

; TwWidTbl is a pointer to a twiddle factor |ookup table with the follow ng

; format: Longword O f set 1st word 2nd word

; k: (2715) *cos(2K/ 4096) (2"15) *si n(2K/ 4096)

; Where k ranges fromO to 1023. The twiddle table is therefore 4K in size, so

; this routine can transform sequences and integer power of 2 in length from

; 4 to 4096.

; To process sequences up to 16K in length, a larger twi ddle table nust be created
; and the CSAdIncr (Cos/Sin address increnent) variable nmust be increased

; fromits current value of 2048 (doubled to 4096 for 8K sequence |engths).

; The routine, however, has not been tested for sequences |onger than 4K

; Bitreversal of the data nmust be done prior to calling this routine, e.g. with

; BitRevQ or BitRevEZ in one dinension, or with BitRevRows in two di nensions.

95

96

The function returns the total nunber of bits shifted during the cal cul ation.

The correct scaling can be obtained by nultiplying the transformby 27Shift Total
(though this nmay result in nunbers bigger than 16 bits and does not add to the
result's information content).

Because of the Hartley Transfornmis synmetry, this routine can be used for

both forward and inverse transfornations.

No checking is done for incorrect input; this is relegated to the calling routine.
This routine will run on any 680x0 processor.

; The register map for this routine is as follows:
| DO csAAOf set

AD x”

DI num@3s | gpNum Al cs”

D2 gpSize | gplndex A2 scratch

D3 scratch A3 Adl | Ad2

D4 scratch A4 Ad3 | Ad4

D5 scratch A5 N | stage

D6 scratch A6 FranePtr

D7 scratch A7 StackPtr

The other val ues used are
. A6 Ofsets

Shi ft Tot EQU 18 ; total bits shifted
baseAddr EQU 14 ; Ptr to data AND
N EQU 12 ; length of xform
Twi dTbl EQU 8 ; ptr to table of twiddle factors
a dshift EQU -2 ; nunBits to shift on this load this stage
NewShi f t EQU -4 ; nunBits to shift on this |oad next stage
Ad2 EQU -6 ;
Ad1 EQU -8 ;
Ad1Ad2 EQU -8 ; starting stage address of 1st & 2nd data el enent
Ad4 EQU -10 ;
Ad3 EQU -12 ;
Ad3Ad4 EQU -12 ; starting stage address of 3rd & 4th data el enent
gpAdl ncR EQU -14 ;
gpAdl ncF EQU -16 ;
gpAdl ncFR EQU -16 ; group Address Increment Forward & Retrograde indexing
CSAdI nc EQU -18 ; COS/ SIN Address | ncrenent
UsedRegs REG A2- A5/ D2- D7
start LI NK A6, #-18 ; Lotsa Local s

MOVEM L UsedRegs, -(SP) Save registers

MOVE. L baseAddr (A6), A4 A4: baseAddr

MOVE. W N(A6), DO ; move Ninto | o(D0)
MOVE. W Do, D1 ;
SWAP Do ;
MOVE. W D1, DO ;
MOVEA. L Do, A5 ;

MOVE. W #0, Shi ft Tot (A6)

A5: N| N
ShiftTotal = 0 initially

; First 2 butterflys done in one | oop

St agel2 MOVE. W A5, DO ; DO: N
ASR W #2, DO ; DO: Ndiv 4
SUBQ W #1, DO ; DO: Ndiv 4 -1
MOVEQ L #0, D7 ; D7: Newshift | maxVal
Sl12Loop MOVE. W Do, D1 ; calculate address offsets of data
ASL. W #3, D1 i #3 -> 2wice N for even addr.
MOVE. L D1, D2 ;
ADDQ W #4, D2 ; DL: ?? | Ad1,2
SWAP D1 ;
MOVE. W D2, D1 ; DL: Ad1,2 | Ad3,4
MOVE. L 0(A4,D1. W, D5 ; Db c | d
MOVE. L D5, D6 ;
SWAP D6 ; D6: d| ¢
SWAP D1 ;
MOVE. L 0(A4,D1.W, D3 ; D3 al| b
MOVE. L D3, 4 ;
SWAP D4 ; D4t b | a
; > D3 D2
MOVE. W D3, D2 | b a a b a b
ADD. W D4, D3 | b a a a+tb a b
SUB. W D2, D4 | b a-b a a+tb a b
; D6 D5 D2
MOVE. W D5, D2 | d c c d c d
ADD. W D6, Db | d c c c+d c d
SUB. W D2, D6 | d c-d c c+d c d
MOVE. W D3, D2 | c a+b
ADD. W D5, D2 | c a+b+c+d
SWAP D2 | a+b+c+d ¢
MOVE. W >4, D2 | a+b+c+d a-b
ADD. W D6, D2 | a+b+c+d a-b+c-d
MOVE. L D2, 0(A4,D1. W ; copy x[Adl, 2] back to nenory
SWAP D1
MOVE. W #0, D7 ; maxVal =0

pos1

pos2

pos3

pos4

Gon2

LEOneBi t OF

NoCF
Cont 1

; set up the | oop

| ogLoop

St age

BTST. L #17, D7 ; already 2 bits OF detected?
BNE. S GoOni ; No -> check for OF

TST. W D2 ;

BGE. S posl

NEG W D2 ;

R W D2, D7 ;

SWAP D2 ;

TST. W D2 ;

BCGE. S pos2

NEG W D2 ;

R W D2, D7 ; set up maxVal

MOVE. W D3, D2 | a+b+c+d a+b

SUB. W D5, D2 | a+b+c+d a+b-c-d

SWAP D2 | a+b-c-d a+b+c+d

MOVE. W >4, D2 | a+b-c-d a-b

SUB. W D6, D2 | a+b-c-d a-b-c+d

MOVE. L D2, 0(A4,D1. W ; copy Xx[Ad3, 4] back to nenory
BTST. L #17, D7 ; Already 2 bits of OF?

BNE. S Gon3 ; No -> check for OF

TST. W D2 ;

BGE. S pos3

NEG W D2 ;

R W D2, D7 ;

SWAP D2 ;

TST. W D2 ;

BGE. S pos4

NEG W D2 ;

R W D2, D7 ; set up maxVal

v, W #$1FFF, D7 ; now conpare with mag limt
BLE. S Gon2 ; less than -> no OF

BSET. L #16, D7 ; otherw se, shift next stage by 1 bit when | oading
CWP. W #$3FFF, D7 ;

BLE. S GoOn3 ;

BSET. L #17, D7 ; 2 bits of OF -> set Bit 17
DBRA. W DO, Si2Loop ; end loop of first two stages
SWAP D7 ;

BTST. L #1, D7 ; 2 bits of OF?

BEQ S LEOneBi t OF ;

MOVE. W #2, D7 ;

BRA. S Cont 1 ;

BTST. L #0, D7 ;

BEQ S NoOF ;

MOVE. W #1, D7 ;

BRA. S Cont 1 ;

MOVE. W #0, D7 ;

ADD. W D7, ShiftTot (A6) ;

MOVE. W D7, QA dshift (A6) ; for next stage

MOVE. W A5, D7 ; D7 @ N

CWPl . W #8, D7 ; If transformlength only 4 then end
BLT exit |

MOVE. L Twi dTbl (A6), Al . Al: cs”

MOVE. L A4, AO ; A0: x”

vari abl es stage, gpNum and bf Num as wel |

as gpSi ze numE®s and nunBfs

MOVE. L A5, DO ;

MOVE. W #15, D1 ;

BTST. L D1, DO ;

DBNE. W D1, |ogLoop |

MOVE. W D1, DO ;

MOVE. W Do, D3 ;. copy

SUBQ W #3, DO ;

MOVE. L DO, A5 ; A5: N | stage ;; stage := Nog2 - 3
MOVE. L A5, D1 ;

SWAP D1

ASR W #3, D1 ; nunps := naxN div 8;

SWAP D1 ; D1: numGps | gpNum

MOVE. L #$00020000, D2 ; D2: gpSize | gplndex

MOVE. #$00000008, Ad1Ad2(A6) Set up Adl and Ad2

MOVE. L #$0004000C, Ad3Ad4(A6) Set up Ad3 and Ad4

MOVE. L #$00000010, gpAdl ncFR(AB) ; Set up Group Address Increments forward & retro
MOVE. W #2048, CSAdI nc(A6) ; Set up Cos/Sin Address |ncrenent

this address increnent tailored to a TWD resource
allowing 4K transformlength - a TWD resource for 8K length needs this CSAdinc to be 4K, etc.

MOVE. W #0, Newshi ft (A6) : no OF s
MOVE. L DI, D3 ;
SWAP D3 ;
SUBQ W #1, D8 :
MOVE. W D3, DI ;. gpNum :

een yet

= nun®s - 1 downto O

97

98

MOVE. L Ad1Ad2(A6), A3 © A3 Adl | Ad2
MOVE. L Ad3Ad4(AB), A4 © M: Ad3 | Add

; fetch addresses Adl - Ad4 & calculate 1st butterfly

G oup MOVEQ L #0, D7 ;
MOVE. W a dshift(A6), D7 ; D7: maxVal | A dshift
MOVE. L A3, D3 ; D3: Adl | Ad2
MOVE. W 0(A0, D3. W, D4 ;
ASR W D7, D4 ; shift if OF dictates
SWAP > ;
SWAP D3 ;
MOVE. W 0(A0, D3. W, D4 ; D4r x[Ad2] | x[Ad1]
ASR W D7, D4 ; shift if OF dictates
MOVE. L D4, D5 ;
SWAP D5 ;
MOVE. L D5, D6 ;
ADD. W D4, D5 ;
SUB. W D6, D4 ;
MOVE. W D5, O(AO0, D3.wW 7 X[AdL] = x1 + x2
SWAP D3 ;
MOVE. W D4, O(AO0, D3.W 7 X[Ad2] = x1 - x2
TST. W Newshi f t (A6) ; Over Flow already?
BNE. S Gon4 ; yes -> no need to check
SWAP D7 ;. now accunul at e nmaxVal
TST. W > ;
BGE. S pos5 ;
NEG W > ;
pos5 R W D4, D7 ;
TST. W D5 ;
BGE. S pos6 ;
NEG W D5 ;
pos6 R W D5, D7 ;
SWAP D7 ;
GoOn4 MOVE. L A4, D3 ;
MOVE. W 0(A0, D3. W, D4 ;
ASR W D7, D4 ; shift if OF dictates
SWAP > ;
SWAP D3 ;
MOVE. W 0(A0, D3. W, D4 ; D4r x[Ad4] | x[Ad3]
ASR W D7, D4 ; shift if OF dictates
MOVE. L D4, D5 ;
SWAP D5 ;
MOVE. L D5, D6 ;
ADD. W D4, D5 ;
SUB. W D6, D4 ;
MOVE. W D5, 0(A0, D3. W ; X[Ad3] := x3 + x4
SWAP D3 ;
MOVE. W D4, 0(A0, D3. W ; X[Ad4] := x3 - x4
TST. W Newshi f t (A6) ; Over Flow already?
BNE. S Gons ; yes -> no need to check
SWAP D7 ;. now accunul at e nmaxVal
TST. W > ;
BGE. S pos7 ;
NEG W > ;
pos7 R W D4, D7 ;
TST. W D5 ;
BGE. S pos8 ;
NEG W D5 ;
pos8 R W D5, D7 ;
v, W #$1FFF, D7 ; maxVal > #$1FFF => Over Fl ow
BLT. S GoOn5 ; no OF -> go on
MOVE #1, NewsShi ft (A6) ;
SWAP D7 ; D7: nmaxVal | ol dshift
GoOn5 MOVE. L D2, D3 ;
SWAP D3 ;
SUBQ W #2, D3 ;
MOVE. W D3, D2 ; gplndex := gpSize - 2 downto O
MOVE. L A3, D3 ; update Adl & Ad2
ADDQ W #2, D3 ; Ad2 1= Ad2 + 2
SWAP D3 ;
ADDQ W #2, D3 ; Adl = Ad1 + 2
SWAP D3 ;
MOVEA. L D3, A3 ;
MOVE. L Ad, D3 ; update Ad3 & Ad4
MOVE. L D2, D4 ;
SWAP D4 ; D4: gplndex| gpSize
ASL. W #1, D4 ;
SWAP D3 ;
ADD. W D4, D3 ;

SUBQ W #2, D3 ;
SWAP D3 ; Ad4 = Ad4 + gpSize - 2
ADD. W D4, D3 ;
SUBQ W #2, D3 ; Ad3 := Ad3 + gpSize - 2
MOVEA. L Al ;

D3,
MOVE. W CSAdl nc(A6), DO DO: CSAdOr f set

; fetch addresses Adl - Ad4 & put CS[CSAd] into D7

bf Loop MOVE. W adshift(A6), D7 ;
MOVE. L A3, D3 ; D3: Adl | Ad2
MOVE. W 0(A0,D3. W, D5 ; DB * | x[Ad2]
ASR W D7, Db ; shift if OF dictates
SWAP D3 ;
MOVE. W 0(A0,D3. W, D6 ; D6 * | x[Ad1]
ASR W D7, D6 ; shift if OF dictates
SWAP D6 ; D6 x[Ad1] | *
MOVE. L A4, D3 ; D3: Ad3 | Ad4
MOVE. W 0(A0,D3. W, D4 ; D4 * | x[Ad4]
ASR W D7, D4 ; shift if OF dictates
SWAP D3 ;
MOVE. W 0(A0,D3. W, D6 ; D6: x[Ad1] | x[Ad3]
ASR W D7, D6 ; shift if OF dictates
MOVEA. L D6, A2 ; save
MOVE. L 0(Al1,D0. W, D7 ; D7: cos | sin
MOVE. L D7, D6 ; performng | ong subtraction avoi ds need
CLR W D6 ; to check for case of sin/cos = $8000 (N>=2048)
SWAP D6 ; D6: 0| cos
MOVEQ L #0, D3 ;
MOVE. W D7, D3 ; D3: 0| sin
SUB. L D3, D6 ; DB: * | cos - sin (difference always < $8000)
MILS. W D5, D6 ; D6: X2(c - s)
MOVE. W D4, D3 ; D3: X4
ADD. W D5, D3 ; D3: X4 + X2
SUB. W D5, D4 ; D4 X4 - X2
CWPl . W #$8000, D7 ; is sin factor = 2715?
BEQ S nowul t 1 ; long sequences (look at beg/end of TWD table)
MILLS. W D7, D3 ; D3: s(X4 + X2)
BRA. S Gon6 ;
noMul t1 SWAP D3 |
CLR W D3 ; Equivalent to multiplying by 2716
ASR. L #1, D3 ; D3: s(X4 + X2)
GoOn6 SWAP D7

Cwl . W #$8000, D7

BEQ S noMil t 2 ;
MILS. W D7, D4 ; DA c(X4 - X2)
BRA. S GoOn7 ;
noMul t 2 SWAP D4 |
CLR W D4 ; Equivalent to multiplying by 2716
ASR L #1, D4 ; DA c(X4 - X2)
GoOn7 ADD. L D6, D3 ; D3: cX2 + sX4
ADD. L D6, D4 ; DA cX4 - sX2
MOVE. W #15, D7 ;
ASR. L D7, D3 ; Because mult'd by cos*2715
BCC. S RoundDn1l ;
ADDQ W #1, D3 ;
RoundDnl ASR. L D7, D4 ; Because mult'd by cos*2"15
BCC. S RoundDn2 ;
ADDQ W #1, D4 ;
RoundDn2 MOVE. L A2, D7 ; D7: x[Ad1l] | x[Ad3]
MOVE. W D7, D5 ;
SUB. W D4, D5 ; DB o* | x3
ADD. W D4, D7 ; D7 x| x4
MOVE. L D7, D6 ;
SWAP D6 ;
MOVE. W D6, D4 ;
SUB. W D3, D4 ;o DAro*] x2
ADD. W D3, D6 ;o DB: * | x1
MOVE. L A3, D3
MOVE. W D4, O(AO0,D3. W ; store x2
ADDQ W #2, D3 ; update Ad2
SWAP D3
MOVE. W D6, O(A0,D3. W ; store x1
ADDQ W #2, ; update Adl
SWAP D3 ;
MOVEA. L D3, A3 ; store updated Adl | Ad2
MOVE. L A4, D3
MOVE. W D7, O(A0,D3. W ; store x4
SUBQ W #2, D3 ; update Ad4

100

pos9

pos10

pos1l

pos12

TST. W
BNE. S

MOVE. W
TST. W
BGE. S
NEG W
R W
TST. W
BGE. S
NEG W
R W
TST. W
BGE. S
NEG W
R W
TST. W
BGE. S
NEG W
R W
aw. W
BLT. S

MOVE. L
MOVE. L
ADD. W
SWAP
ADD. W
SWAP

SWAP
MOVE. L
ADD. W
SWAP
ADD. W
SWAP
MOVEA. L

DBRA. W

TST. W
BEQ S
MOVE. L
SWAP

’

BEEE

D3,

Newshi f t (A6)

GoOn

#0,
D4
pos9
D4
D4,
D5
pos1
D5
D5
D6
pos1
D6

D6
D7
posl
D7
D7,

#$1FFF, D3

GoOn

#1, Newshi ft (A6)
CSAdI nc(A6)

D2, bf Loop

«Q

B 8 @ & 8 BB

BRRBRER REBRBRER

2R

BREBS BBERR

Ad1(
Ad2(
Ad3(
Add4(

gpAdl ncF(AB)
gpAdl ncR(AB)

CSAdI nc(A6)

A5

s,
#1,
s,

NewShi f t (A6),
D7, ShiftTot (AB)
Newshi f t (A6),

D4,

a dshi f t (A6)

exit
A5,
DO

. 0(A0, DB. VY
D3

A

8

D3

D3

0

D3

1

D3

2

D3

8

pAdl ncFR(A6)

D3
D3
D3
A4

=)
c
©

D3
D2

26)
26)
26)
26)

D3
D4
D3
A5

St age

DO

’
’
’
’

f

store x3
updat e Ad3

store updated Ad3 | Ad4

D4: maxVa

for next stage
Updat e Cos/ Sin Address
gpl ndex := gplndex - 1, Loop if >= 0

D4: gpAdlncF | gpAdlncR
D3: Ad3 | Ad4
gpAddr ess base : = gpAddress base + adl ncrenent

update Ad3 & Ad4
gpAddr ess base : = gpAddress base + adl ncrenent

update Adl & Ad2

nun®s := nunps div 2

gpSi ze : = gpSize * 2

updat e group Address bases

updat e group address increnents

updat e Cos/ Sin Address |ncrenent

stage := stage - 1

Updat e Shi ft Tot

t(A6) ; Update O dshift

was there to be a shift @end?
no -> exit

TwoBi t Loop

OneBi t Loop

exit

SUBQ W
MOVE. W

oWl . W
BEQ S

MOVE. W
ASR W
MOVE. W
DBRA. W
BRA. S

#1, DO
a dshift(A6), Dl

#1, D1
OneBi t Loop

(A0), D2

D1, D2

D2, (A0)+

DO, TwoBi t Loop
exit

(A0) +
D0, OneBitLoop

(SP) +, UsedRegs
A6

(SP)+, AD
#10, SP
(A0)

CEHT :

DO: counter

Dl: NunBits to shift

if only one bit to shift, can do fast!

Two bits to shift

then exit

only way to use this instr directly on nem

restore reg's
restore old A6

pop return address
di scard paraneters

return to caller

MacsBug Nane

-> sl ower

101

102

FHTUtilsa

Included in this file are several
FFT' s,
may be freely duplicated and used (at your own risk).

di mensi onal

Until 4/15/90:

Per manent | y:

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Bi t RevEZ

function BitRevEZ(x:

function BitRevEasy bitreverses the integer array of 'length’
It does a getresource call
'BREV' of the appropriate size.
as 0, otherwise,

; to by x.

PRI NT OFF

| NCLUDE 'Traps. a'

PRI NT ON

TI TLE 'FHTutils. a'

STRI NG ASI S ; to make DC. B work w normal 'strings'
MC68881 ; Needed for routines using FPU

routines needed in the conputation of 1 and 2
such as bit-reversal and power spectrum cal culation. They

Questions about the inplenmentation of these routines can be directed to me at:

Arl o Reeves

Thayer School of Engineering
Dart mout h Col | ege

Hanover, NH 03755

(603) 643 9076

BI TNET: arl o@mc. dart nout h. edu

Box 345
Mendoci no, CA
(707) 937 5686

95460

PROC EXPORT
ptr;

I ength: integer):ErrCode;

el enents pointed

to get a bitreversal |ookup table of type

If BitRevEZ finds the resource, ErrCode is returned
it is returned as 1 (Nl resource handle).

NOTE: Length nust be a power of 2.

Er r Code

X
I ength
N | HEr r

UsedRegs

conti nue

| oop

exit

EQU 14 ; ErrCode result A6 of fset

EQU 10 ;

EQU 8 ;

EQU 1 ;

REG A2/ Ad] D2- D4 ;

LI NK A6, #0 ; No Local s

MOVEM L UsedRegs, -(SP) ; Save registers

MOVE. W #0, ErrCode(A6) ; Default ErrCode is O

MOVE. L x(A6), Al i AL X

MOVE. W I engt h(A6), DO ; DO: length

MOVE. W Do, D1 ; Duplicate DO

ADD. W #124, D1 ; Add 124 to D1 to get Rsrc ID
SUBQ L #4, SP ; Reserve space for Rsrc handle
MOVE. L # BREV', -(SP) ; Pass RSRC Type and

MOVE. W D1, -(SP) ; RSRC ID

_Get Resource ; Get the resource

MOVE. L (SP)+, DO ; Put Resource Handle in DOto set CCR
BNE. S conti nue ; just in case handle is nil
MOVE. W N [HErr, ErrCode(A6) ; set ErrCode = 1 => N | RHandl e
BRA. S exit ; and exit

MOVE. L Do, A2 ; use the handle

MOVEA. L A2, A4 ; Copy the handle into A4

MOVE. L (A4), A2 ; Dereference the Rsrc Handle in A2
MOVE. W (A2)+, D1 ; Move nunBwaps into DL

SUBQ W #1, D1 ; nunBwaps -1 needed for DBRA
MOVE. L (A2) +, D2 ; Displacenent of first swap add
MOVE. W D2, DO ; nmove loword disp into DO

SWAP D2 ; hiword disp in D2

MOVE. W 0(A1,D0. W, D3 ; 1st integer in D3

MOVE. W O(AL, D2. W, D4 ; 2nd integer in D4

MOVE. W D3, O(A1, D2. W ; Store back in reversed order
MOVE. W D4, O(A1, DO. W ;"

DBRA D1, | oop ;ountil nunBwaps (left) =0
MOVE. L A4, -(SP) ; push resource handl e

_Rel easeResour ce . rel ease Resource

MOVEM L (SP) +, UsedRegs ; restore reg's
UNLK A6 ; restore old A6
MOVEA. L (SP)+, A0 ; pop return address
ADDQ L #6, SP ; discard paraneters
JMP (A0) ; return to caller
DC. B ' Bl TREVEZ' ; MacsBug Name

Bi t RevQ

procedure BitRevQ x:

ENDPROC

PRCC

ptr;
| engt h:

EXPORT

Bi t RevTbl : pt

i nt eger;

r);

,

Bi t

RevEZ

; function BitRevQuick bitreverses the integer array of 'length' elenents pointed
; to by x. It relies on the caller to provide a pointer to the appropriate

resource of type 'BREV .

If this pointer is nil,

Bi t RevQ returns w o having

done anything to the input data. By elimnating the getresource call, BitRevQ
is quicker than BitRevEZ.
NOTE: Length nust be a power of 2.
dat a EQU 14 ; A6 offsets
I ength EQU 12 |
Bi t RevThl EQU 8 ;
UsedRegs REG A2/ A4l D2- D4 |
LI NK A6, #0 ; No Local s
MOVEM L UsedRegs, -(SP) ; Save registers
MOVE. L Bi t RevTbl (A6), DO ; to set condition codes
BEQ S exit ; if nil then quit
MOVEA. L Do, A2 ; A2: BitRevTbl
MOVE. L data(A6), Al ; Al: data
MOVE. W I engt h(A6), DO ; DO: length
conti nue MOVE. W (A2) +, D1 ; Move nunBwaps into DL
SUBQ W #1, D1 ; nunBwaps - 1 needed for DBRA
| oop MOVE. L (A2) +, D2 ; Displacenent of first swap add
MOVE. W D2, DO ; nmove loword disp into DO
SWAP D2 ; hiword disp in D2
MOVE. W O(A1,D0. W, D3 ; 1st integer in D3
MOVE. W O(AL, D2. W, D4 ; 2nd integer in D4
MOVE. W D3, O(Al, D2. W ; Store back in reversed order
MOVE. W D4, O(A1, DO.W .
DBRA D1, | oop ;ountil nunBwaps (left) =0
exit MOVEM L (SP) +, UsedRegs ; restore reg's
UNLK A6 ; restore old A6
MOVEA. L (SP)+, A0 ; pop return address
ADDA. W #10, SP ; discard paraneters
JMP (A0) ; return to caller
DC. B ' BI TREVQ ' ; MacsBug Name
ENDPROC ; BitRevQ
Bi t RevRows PROC EXPORT
procedure BitRevRows(i MatPtr: ptr;
rowwrds: integer;
Bit RevTbl: ptr);

rowdrds x rowwrds natrix pointed to by i MatPtr.

it BitReverses EACH row of the

Like BitRevQ it also relies on the

calling routine to supply a pointer to the | ookup table (resource BREV),

; BitRevRows is simlar to BitRevQ but
; instead of loading it

A NL BitRevTbl
i Mat Pt r
r owr ds
Bi t RevThl

UsedRegs

r owLoop

itself (as in BitRev).

will cause this routine to return w o having done anyt hi ng.

EQU
EQU
EQU

SUBQ W
MOVE. L

14
12
8

A2/ D2- D6

AG,

UsedRegs,
Bi t RevThl (A6), DO

exit
Do,

i Mat Pt r (A6),
rowr ds(A6), DO

(A1)
Al,
#1,
DL,

#0

Al

+, DL
A2
D1
D2

-(SP)

’

A0

A6

No

Ofsets

Local s

Save registers

if

Al:
AO:
DO:

D1:
A2:
D1:
D2:

D3:
DO:

BitRevTbl is NIL then exit
Bi t RevThl
i Mat Pt r
r owr ds

nunBwaps

swap start

nunBwaps cntr.
nunBwaps cntr store

rowc f set
rowwrds cntr

swap indi ces

103

104

MOVE. W D6, (A0, D4. W

DBRA. W D1, rowLoop for each Swap

MOVE. W D2, D1 ; restore nunBwaps cntr

ADDA. L D3, A0 ; increnent addr for next row
MOVEA. L A2, Al ; restore Thl Addr

DBRA. W DO, rowLoop for each row
restore reg's
restore old A6
pop return address
di scard paraneters

exit MOVEM L (SP) +, UsedRegs
A6

MMVEA L (SP)+ AO
ADDA. W #10, SP

JMP (A0) return to caller
DC. B ' BTRVRONS' ; MacsBug Name
ENDPROC ; Bi t RevRows

Shi ft RowsR PROC EXPORT

procedure ShiftRowsR(i MatPtr: ptr;
rowwrds: integer;
maxShift: integer;
Rowshf Arr: ptr);

; Each row of the rowrds x rowrds integer natrix pointed to by i MatPtr is right
; shifted by a nunber of bits specified by the difference naxShift - RowShfArr[r]
; Where RowsShfArr (= array[O0..rowrds -1] of integer) contains the nunber of

; bits each row has shifted (during transformation).

; During the right shift operation ShiftRowsR rounds the nunbers instead of

; throwing out the bits shifted out. It does this in a very sinple way by

; checking the carry bit (the value of the last bit shifted out). |If it is

; set, then the nunber is rounded up; if it is not, the nunber is left as is.

; Because each word nust be manipulated in this routine, there is no fast |oop

; for the coomon 1 bit shift case.

; maxShift is the maxi num nunber of bits by which any row was shifted during the
; transform (in FHT). RowshfArr contains the nunber of bits by which each row

; was shifted. To make all rows shifted by maxShift, each rowis shifted here

; by maxShift - RowsShfArr[row ndex] bits.

i Mat Ptr EQU 16 ; Ptr to data
r owbr ds EQU 14 ; length of row
maxShi ft EQU 12 ; maxi num of array
Rowshf Arr EQU 8 ; Array W nunber of bits to shift right
UsedRegs REG D2- D6/ A2
start LI NK A6, #0 ; No Local s
MOVEM L UsedRegs, -(SP) ; Save registers
MOVE. L i MatPtr(A6), A0 ; AO: i MatPtr
MOVEA. L AD0, A2 ; A2: iMatPtr (row nodified)
MOVE. L Rowshf Arr (A6), Al ; Al: RowShfArr
MOVE. W rowr ds(A6), DO ; DO: rowwrds

MOVE. W Do, D4

EXT. L > ;
ADD. L >4, D4 i D4 rowd fset
SUBQ W #1, DO ; DO: rowwbrds cntr store
MOVE. W Do, D1 ; DL: row cntr
MOVE. W D1, D2 ; D2: col cntr
MOVE. W maxShi ft (A6), D3 ; D3: maxShift
rowLoop MOVEA. L A2, AO ; AO: points to current row
MOVE. W (A1) +, D5 ; D5: nunBits already shifted
SUB. W D3, D5 ;
NEG W D5 ; D5: nmaxShift - BitShfArr[r]
BLE. S Shf Done ; if nunBits <= 0 then No Shift necc.
CGenShi ft MOVE. W (A0), D6 ; D4: data
ASR W D5, D6 ; shift it
BCC. S NoRound |
ADDQ W #1, D6 ;
NoRound MOVE. W D6, (A0)+ ; put it back
DBRA. W D2, GenShift ; for each col
Shf Done ADDA. L >4, A2 |
MOVE. W Do, D2 ; restore col cntr
DBRA. W D1, rowLoop ; for each row
exit MOVEM L (SP) +, UsedRegs restore reg's
UNLK A6 restore old A6

MMVEA L (SP)+ AO
ADDA. W #12, SP

pop return address
di scard paraneters

JMP (A0) ; return to caller

DC. B ' SFTROABR ; MacsBug Nane

ENDPROC ; Shi ft RowsR
MeanZer o PROC EXPORT

,
,
,
,
,
,
,

procedure MeanZero(srcPtr: ptr;
buf Si ze: longint);

Procedure MeanZero traverses the bufSize integer array pointed to by srcPtr
and cal cul ates the average value of the matrix elenents. It the traverses the
array again, subtracting the average fromeach elenent. This renoves the DC
conponent of the 2D transformof this matrix.

ércPtr EQU 12 ; A6 offsets
buf Si ze EQU 8 |
UsedRegs REG D2- D6

LI NK A6, #0 ; no locals

MMVEM L UsedRegs, -(SP)

MOVE. L srcPtr(A6), A0 ; AO: srcPtr

MOVE. L buf Si ze(A6), DO |

MOVE. L Do, D1 ; Dl: counter

MOVEQ L #0, D2 ; D2: 1o longword of accumnul ator

MOVEQ L #0, D3 ; D3: hi longword of accumnul ator

MOVEQ L #0, D4 ; D4: zero needed for addx

MOVEQ L #0, Db ; Db: H word nust be zero
sumnlLoop MOVE. W (A0)+, Db ;

ADD. L D5, D2 ;

ADDX. L D4, D3 ; if carry bit, carry on

SUBQ L #1, D1 ;

BNE. S suniLoop ;

’

have accunul ated 64 bit sumin D3:D2; now sinulate divide by subtracting DO repeatedly

MOVEQ L #0, D1 ; D1: zero needed for subx
di vLoop SUB. L Do, D2 |
SUBX. L D1, D3 ;
BLT. S di vDone |
ADDQ L #1, D4 ; D4: quotient
BRA. S di vLoop |
di vDone MOVE. L srcPtr(A6), A0 |
subt Loop SUB. W D4, (A0)+ ;
SUBQ L #1, DO ;
BNE. S subt Loop |
exit MOVEM L (SP) +, UsedRegs ; restore reg's
UNLK A6 . restore old A6
MOVEA. L (SP)+, A0 ; pop return address
ADDQ L #8, SP ; discard paraneters
JMP (A0) ; return to caller
DC. B ' MEANZERO ; MacsBug Nane
ENDPROC ; MeanZero
FHTt oFFT1D PRCC EXPORT

procedure H oF1D(H iArrPtr;
F. icArpbtr;
nunPts: integer);

procedure FHTt oFFT1D takes a nunPts long Hartley transform pointed to by x and
converts it into a conplex Fourier transformpointed to F. Fis of type cArrPtr:
icPoint = record
re, im integer;
end;
icArr = array[O..maxStoreLess1] of icPoint;
icArrPtr = NicArr;
Both pointers H & F nust be valid (not nil) and nunPts nust be a power of 2.
The nenory pointed to by F needn't be initialized.

H EQU 14 ; A6 offsets

F EQU 10 ;

nunPt s EQU 8 ;

UsedRegs REG D2- D6
LI NK A6, #0 ; no locals
MOVEM L UsedRegs, -(SP) ;
MOVE. W nunPt s(A6), DL ; D1: nunPts
MOVEA. L H(A6), A0 ; AO: H
MOVEA. L F(A6), Al ; Al: F

105

106

; Do zero'th elenment of array first - special

MOVE. W
SWAP
CLR W
MOVE. L

(A0), DO
DO
DO
Do, (A1)

case

; Do Ndiv 2+ 1'th elenent next - also a special

MOVE. W
SWAP
CLR W
MOVE. W
ASL. W
MOVE. L

0(A0, DLW, DO
DO

DO
DI, D2
#1, D2
DO, O(AL, D2.W

; Now do rest of the points in a |oop

DO: 22?2 | H0)

DO: H(0) | 0 = F(0)
Store result

case
Ndiv 2+ 1thelenment -

DO: H(Ndiv 2 + 1) |

Store result

m ddl e of spectrum

0=FNdiv 2+ 1)

MOVE. W D1, DO ; DO: N
ASR W #1, D1 ;
SUB. W #2, D1 ; D1: counter
MOVE. W #2, D2 ; D2 f (i nteger index)
MOVE. W Do, D3 ;
ASL. W #1, D3 ;
SUB. W #2, D3 ; D3: N - f (integer index)
| oop MOVE. W 0(A0, D2. W, D4 ; D4r H(f)
MOVE. W 0(A0, D3.W, D5 ; DB H(N - f)
MOVE. W D5, D6 ; D60 H(N - f)
ADD. W D4, D5 ; D5 Hf) + HN- f) =re
SUB. W D4, D6 ; D6 -(H(f) - HN- f)) =im
ASR W #1, D5 ;
ASR W #1, D6 ;
SWAP D5 ;
MOVE. W D6, Db ; DB re | im
MOVE. W D2, D6 ;
ASL. W #1, D6 ;
MOVE. L D5, O0(Al, D6. W ; store F(f)
MOVE. W D3, D6 ;
ASL. W #1, D6 ;
NEG W D5 ; CHS of impart
MOVE. L D5, O0(Al, D6. W ; store F(N - f)
ADDQ W #2, D2 ;
SUBQ W #2, D3 ;
DBRA D1, |oop |
exit MOVEM L (SP) +, UsedRegs ; restore reg's
UNLK A6 ; restore old A6
MOVEA. L (SP)+, A0 ; pop return address
ADDA. W #10, SP ; discard paraneters
JMP (A0) ; return to caller
DC. B 'H oF1D ' ; MacsBug Name
ENDPROC ; HoF1D
FFTt oFHT1D PROC EXPORT
procedure FtoHLD(F: icArrPtr;
H: iArrPtr;
nunPts: integer);

; procedure FtoHLD converts an integer Fourier transformof |length nunPts into
; a Hartley transform icP points to the conplex integer array holding the Fourier
; transformand i xXP points to the integer array Hartley transformresult.

For a definition of icArrPtr type, see H oF1D.

Again, no checking is done for nil pointers and nunPts nmust be a power of 2.
F EQU 14 ; A6 offsets
H EQU 10 ;
nunPt s EQU 8 ;

UsedRegs REG D2- D3
LI NK A6, #0 ; no locals
MOVEM L UsedRegs, -(SP) ;
MOVE. W nunPt s(A6), DL ; D1: nunPts
MOVEA. L H(A6), A0 ; A0 H
MOVEA. L F(A6), Al ;o Al F
SUBQ W #1, D1 ; D1: counter
| oop MOVE. L (A1) +, D2 ; D20 re | im
MOVE. L D2, D3 ;

SWAP D3 D3: im]| re

107

SUB. W D2, D3 ; D3: im| re - im
MOVE. W D3, (A0)+ ;
DBRA D1, | oop |

exit MOVEM L (SP) +, UsedRegs restore reg's
UNLK A6 restore old A6

MVEA L (SP)+ AO
ADDA. W #10, SP

pop return address
di scard paraneters

JMP (A0) return to caller
DC. B 'FtoHID ; MacsBug Nane
ENDPROC ; FtoH1D

psFHT1D PROC EXPORT

,
,
,
,
,
,
,
,
,
,
,
,
’
’
’
’
’
’
’
’
’

procedure psFHT1D(h: iArrPtr;
ps: i ArPtr;
nunPts: integer;
scal eType: integer);

procedure psFHT1D conputes the power spectrumfromthe nunPts |ong Hartley transform
pointed to by h and puts the result in the integer array ps. The nultiplication
inherent in the ps calculations gives 32 bit results from16 bit words, so these val ues
are nmapped into a their 16 bit destinations. The napping chosen is based on the

scal eType argunent as follows:

scal eType scal i ng i npl ement ed:
<=0 I'i near
1-9 nth root (1st root = linear)
>=10 | og

In order to first deternmine the scale factor and offset of the Iinear napping,

h is first scanned to determi ne the range of output by actually calcul ating

the power spectrum During the second scan, the conputation again takes

pl ace and the scaled data is stored in the dest. This redundancy in conputation
could only be elimnated by an increase in storage requirenents.

WARNI NG the use of this routine requires the existance of an FPU

h EQU 16 . A6 offsets
ps EQU 12 ;
nunPt s EQU 10 ;
scal eType EQU 8 ;
UsedRegs REG D2- D7
LI NK A6, #0 ;
MOVEM L UsedRegs, -(SP) ;
FMOVE. X FP2, -(SP) ; save FP2
MOVE. W nunPt s(A6), DO ; DO: nunPts
MOVEA. L h(A6), A0 ; AO: h
MOVEA. L ps(A6), Al ; Al ps
; first find the nmaxi mum and nini rum of the range
MOVE. L #$7FFFFFFF, D6 ; DB: min
MOVE. L #$80000000, D7 ; D7 max
; first special case: H0)
MOVE. W (A0), D1 ; DL: H(0)
MILS. W D1, D1 ;
ADD. L D1, D1 ;
CWP. L D6, D1 ;
BCE. S not M nl |
MOVE. L D1, D6 ;
not M nl CWP. L D7, D1 |
BLE. S not Max1 ;
MOVE. L D1, D7 ;

’

second special case: HNdiv 2 + 1)

not Max1 MOVE. W 0(A0, DO.W, D1 ; DI HHNDv 2 + 1)
MILS. W D1, D1 ;
ADD. L D1, D1 ;
CWP. L D6, D1 ;
BCGE. S not M n2 |
MOVE. L D1, D6 ;
not M n2 CWP. L D7, D1 |
BLE. S not Max2 ;
MOVE. L D1, D7 ;
; now for the rest of the spectrum
not Max2 MOVE. W Do, D1 ; DO: N
ASR W #1, D1 ;
SUB. W #2, D1 ; DL: counter
MOVE. W #2, D2 ; D2 f (i nteger index)
MOVE. W Do, D3 ;
ASL. W #1, D3 ;
SUB. W #2, D3 ; D3: N - f (integer index)

| oopl MOVE. W 0(A0, D2. W, D4 |

108

not M n3

not Max3

findScal e

r oot Mapl

I'i nMapl

| ogMapl

maxi nt .

for any x the mapping is:

SUB. L
BNE. S
MOVEQ L

MOVE. W
BLE. S
aw. W
BGE. S

FMOVE. L
FD V. W
FLOGN. L
FMUL. X

FETOX. X
MOVE. W
BRA. S

FMOVE. L
MOVE. W
BRA. S

SUBQ L
ADDQ L

FLO®. L
MOVE. W

Fi nd which scaling to use : Dé6:

FPL:
FP2:

D6, D7
findScal e
#1, D7

scal eType(A6),
I'i nMapl
#10, D4
| ogMapl

#1, FP2
D4, FP2
D7, FPO
FP2, FPO
FPO, FPO
#2, Db
GoOnl

D7, FPO
#1, Db
GoOnl

#1, D6
#1, D7
D7, FPO
#3, Db

; Calculate the mul Fact and put it in FP1

speci al

| ogMap2

I'i nMap2

r oot Map2

Gon2

; special

case 1:

case 2:

FMOVE. L
FDI V. X
MOVE. W

D7 contains a scal eType

now cal cul ate actual ps

H(0)

MOVE. W
MILS. W
ADD. L
SUB. L
MOVE. W
SUBQ W
BEQ S
SUBQ W
BEQ S
FLO®. L
FMUL. X
BRA S

FMOVE. L
FMUL. X
BRA. S

FLOGN. L
FMUL. X
FETOX. X
FMUL. X

FMOVE. W
MOVE. W

H(N di v

MOVE. W

#$TFFF, FP1
FPO, FP1
D5, D7

flag: 1 -> linear;

val ues

D2, FPO
FP2, FPO
FPO, FPO
FP1, FPO

FPO, D2
D2, (A1)

2+ 1)

0(A0, DO.W, D2

D4

,
,

,

Now t he val ues of max and min are recorded in D7 and D6 resp.

mn
nul Fact
1/n (for nth root calcul ation)

,

’
’

’

2 ->

scal eType(x - xmin) * nul Fact
where scal eType produces the scaling desired and nmul Fact maps that range
onto O..

D7: max - mn :: range

don't want a range of O!

scal eType is |inear
scal eType is |og

scal eType is nth root
FP1: 1/n

FPO: | n(range)

FPO: 1/ n*I n(range)
FPO: (range)”(1/n)

D5 : scal eType flag

D5: scal eType flag

mn:=mnmn- 1;; to prevent |o0g(0)
increases range by 1
FPO: range !!! 6888x

D5: scal eType flag

FP1: mul Fact
D7: scal eType flag

nth root; 3 -> log

FPO: 1/n * In(x)

| ogMap3 FLORX2. L

I'i nMap3 FMOVE. L

r oot Map3 FLOGN. L

Gon3 FMOVE. W

; nowdo it for the rest
MOVE. W

i
ps)
=

5

(92}
o
£s

| oop2

= £z=s

| ogMap4 FLORX2. L

I'i nMap4 FMOVE. L

r oot Map4 FLOGN. L

ADDQ W
SUBQ
DBRA

FMOVE. X

exit MOVEM L
UNLK
MOVEA. L
ADDA. W
JMWP

DC. B

ENDPROC

Byt eAvgRect PROC

hei ght) .

FPL,

D2,

D5,

FPL,

FPO,
D5,
D5,

#2,
#2,
D1,

(SP)
(SP)
A6

(SP)
#12,
(A0)

: 2
5
=]
w

FPO: 1/n * In(x)

_n
3

; DO: N
: D1: counter
; D2 f (i nteger index)

D3: N - f (integer index)

FPO ;
FPO ;
FPO ;
FPO ;

FPO: 1/n * I n(x)

D5 ;
0(AL, D2.W ;
0(A1, D3.W ;

D2 ;
D3 ;
| oop2 |

+, FP2 ; restore FP2

+, UsedRegs restore reg's
restore old A6
pop return address
di scard paraneters
return to caller

+, A0
SP

' psFHT1D * ; MacsBug Nane

: psFHT1D

EXPORT

function Byt eAvgRect (baseAddr:
pi xel sPerLine: integer;
roi Wdt h:
roi Hei ght:

ptr;

i nt eger;
integer): integer;

function ByteAvgRect returns the average byte of a rectangular part of a PixMap.
baseAddr is the address of the first byte in the rectangle, pixelsPerLine is the
width of the PixMap (right out of the Image's Piclnfo record), roiWdth is the
width of the rectangle (osRoiRect's width) and roiHeight is its height (osRoiRect's

109

110

; NOTE: |ots of odd addresses generated here.

resul t EQU 18 ;. A6 Ofsets

baseAddr EQU 14 |

pi xel sPL EQU 12 |

roi Wdth EQU 10 |

roi Hei ght EQU 8 |

UsedRegs REG D2- D5/ A2

start LI NK A6, #0 ;
MOVEM L UsedRegs, -(SP) ;
MOVEA. L baseAddr (A6), A0 ; AO: baseAddr
MOVEA. L A0, Al ; Al: |lineAddr stored
MOVE. W roi Hei ght (A6), DO ; DO: nunlines (row)
MOVE. W roi Wdth(A6), D1 ; DO: rowBytes (col)
MOVE. W D1, D5 ;
MILS. W Do, D5 ; DB: nunBytes
SUBQ W #1, DO ; DO: row counter
SUBQ W #1, D1 ; D1: col counter
MOVE. W D1, D2 ; D2: colum count (for restore)
MOVE. W pi xel sPL(A6), A2 ; A2: pixel sPerLine (bytes offset)
MOVEQ L #0, D3 ; tenp byte store
MOVEQ L #0, D4 ; sum of bytes

| oop MOVE. B (A0)+, D3 ;
ADD. L D3, D4 ;
DBRA. W D1, | oop |
MOVE. W D2, D1 ; restore columm counter
ADDA. L A2, AL ;
MOVEA. L Al, A0 ; updat e address
DBRA. W DO, | oop)
CLR W D3 ; D3: quotient

di vLoop SUB. L D5, D4 |
BLT. S done |
ADDQ W #1, D3 ;
BRA. S di vLoop |

done MOVE. W D3, result(A6) |

exit MOVEM L (SP) +, UsedRegs ;
UNLK A6 ;
MOVEA. L (SP)+, A0 ;
ADDA. L #10, SP ;
JMP (A0) ;
DC. B ' BTAVGRCT' ; Macsbug nane
ENDPROC

Byt eRange PROC EXPORT

function ByteRange(baseAddr: ptr;
buf Si ze: longint):longint;

bytes in length, recording max and min. The max is returned in the high word,

; function ByteRange scans the array of bytes starting at baseAddr that is bufSize
: the mininthe lowword of the result.

Yresult EQU 16 |

MOVE. W #$00FF, D3 D3: | o byte nmask

baseAddr EQU 12 |

buf Si ze EQU 8 |

UsedRegs REG D2- D3/ D6- D7 |

start LI NK A6, #0 ;
MOVEM L UsedRegs, -(SP) ;
MOVE. L baseAddr (A6), A0 |
MOVE. L buf Si ze(A6), DO |
ASR. L #1, DO ; fetching in bytes
MOVE.W DB, D6 . D6 nin
MOVE. W #0, D7 ; D7 max

| oop MOVE. W (A0)+, D1 ;
MOVE. W D1, D2 ;
LSR W #8, D1 ; D1: hibyte
AND. W D3, D2 ; D2: lobyte
CWP. W D6, D2 ; check hibyte
BCGE. S not M nl |
MOVE. W D2, D6 ;

not M nl CWP. W D7, D2 |
BLE. S not Max1 ;

MVE W D2, D7

not Max1

not M n2

not Max2

exit

I nt Range

resul t

DC. B

ENDPROC

PRCC

function IntRange(baseAddr:

buf Si ze:

function IntRange scans an
and returns the nax in the

D7
D6, D7
D7, result(A6)

(SP) +, UsedRegs
A6

(SP)+, A0

#8, SP

(A0)

' BYTERNGE'

EXPORT

ptr;
longint): result;

array of integers bufSize long starting at baseAddr
high word, the minin the | ow word of the result

EQU 16
baseAddr EQU 12
buf Si ze EQU 8
UsedRegs REG D2/ D6- D7
start LI NK A6, #0
MOVEM L UsedRegs, -(SP)
MOVE. L baseAddr (A6), A0
MOVE. L buf Si ze(A6), DO
ASR. L #1, DO
MOVE. W #$7FFF, D6
MOVE. W #$8000, D7
| oop MOVE. L (A0)+, D1
MOVE. L D1, D2
SWAP D2
owP. W D6, D2
BCGE. S not M nl
MOVE. W D2, D6
not M nl CWP. W D7, D2
BLE. S not Max1
MOVE. W D2, D7
not Max1 owP. W D6, D1
BCGE. S not M n2
MOVE. W D1, D6
not M n2 owP. W D7, D1
BLE. S not Max2
MOVE. W D1, D7
not Max2 SUBQ L #1, DO
BGT. S | oop
SWAP D7
MOVE. W D6, D7
MOVE. L D7, result(A6)
exit MOVEM L (SP) +, UsedRegs
UNLK A6
MOVE. L (SP)+, A0
ADDQ L #8, SP
JIMP (A0)
DC. B ' | NTRANGE'
ENDPROC
AddSub2Buf sF PROC EXPORT
; procedure AddSub2Buf sF(srcPtrl: ptr;
; srcPtr2: ptr;
| destPtr: ptr;
| srcScal el:

i nt eger;

’

’

’

check | obyte

MacsBug Nane

D6: mn
D7: max

check 1st #

check 2nd #

D7: max | ?
D7: max | mn

MacsBug Nane

111

112

rcScal e2: i nteger;

var dest Scal e: integer; (ptr)
srcSi ze: I ongi nt ;
operati on: i nteger);

; procedure AddSub2Buf sF adds/subtracts the contents of the FHTBuf pointed

; to by srcPtr2 to/fromthe FHTBuf pointed to by srcPtrl and puts the result
; in the FHTBuf pointed to by destPtr (all Bufs are srcSize words in length).
; If operation is >= 0 then the two arrays are added;

; If operation is < O then the two arrays are subtracted.

; srcScale is the power of 2 by which FHTBuf is nmultiplied to give a

; 'correctly' scaled FHTBuf. Since the scalings for the two buffers nmay

; differ, one nust be scal ed according to the difference of srcScal el

; and srcScal e2 before addi ng/ subtracting.

; NOTE: FPU used here.

srchPtrl EQU 30 ;. A6 Ofsets
srcPtr2 EQU 26 ;
dest Ptr EQU 22 |
srcScal el EQU 20 |
srcScal e2 EQU 18 |
dest Scal e EQU 14 |
srcSi ze EQU 10 |
operation EQU 8 |
UsedRegs REG A2- A3 |
UsedFRegs FREG FP2- FP7 ;
start LI NK A6, #0 ;

MOVEM L UsedRegs, -(SP) ;
FMOVEM X UsedFRegs, -(SP) ;

FMOVE. W srcScal e1(A6), FP6

FTWOTOX. X FP6 . FP6: scalel
FMOVE. W srcScal e2(A6), FP7 ;
FTWOTOX. X FP7 . FP7: scal e2
MOVEA. L dest Scal e(A6), A0 ; @lest Scal e
MOVEA. L srcPtri(A6), Al |
MOVEA. L srcPtr2(A6), A2 |
MOVE. L srcSize(A6), DO |
FMOVE. L #$7FFFFFFF, FP4 ; FP4: mn
FMOVE. L #$80000000, FP5 ; FP5: max
TST. W oper ati on(A6) ;
BLT. S SubLoopl |
AddLoopl FMOVE. W (A1) +, FP1 ;
FMOVE. W (A2)+, FP2 ;
FMUL. X FP6, FP1 ;
FMUL. X FP7, FP2 ;
FADD. X FP2, FP1 ;
FQWP. X FP4, FP1 ;
FBGE. W not M nl |
FMOVE. X FP1, FP4 ;
not M nl FQWP. X FP5, FP1 ;
FBLE. W not Max1 ;
FMOVE. X FP1, FP5 ;
not Max1 SUBQ L #1, DO ;
BGT. S AddLoopl |
BRA. S GoOnl ;
SubLoopl FMOVE. W (A1) +, FP1 ;
FMOVE. W (A2)+, FP2 ;
FMUL. X FP6, FP1 ;
FMUL. X FP7, FP2 ;
FSUB. X FP2, FP1 ;
FQWP. X FP4, FP1 ;
FBGE. W not M n2 |
FMOVE. X FP1, FP4 ;
not M n2 FQWP. X FP5, FP1 ;
FBLE. W not Max2 ;
FMOVE. X FP1, FP5 ;
not Max2 SUBQ L #1, DO ;
BGT. B SubLoopl |
GoOnl FABS. X FP4 ; FP4: abs(nmin)
FABS. X FP5 FP5: abs(max)
FQWP. X FP4, FP5

FBGT. W Bi gger 1
FMOVE. X FP4, FP5
Bi gger 1 FMOVE. W #0, FP4
FCWP. X FP4, FP5
FBNE. W not Zer ol
FMOVE. W #1, FP5
not Zer ol CLR W Do
FLOR. X FP5
FMOVE. W #13, FP4
FCWP. X FP4, FP5

FTST woul dn't work in MPW2.02's asmnl

DO: dest Scal e

Goon2 MOVE. W DO, (A0)

FBLT. W Gon2
FSUB. X FP4, FP5
FADD. W #1, FP5
FINTRZ. X FP5
FMOVE. W FP5, DO

Round Up to next integer

DO: dest Scal e

dest Scal e stored

FP4: dest Scal e

FP4: 2~dest Scal e (di vFactor)

FMOVE. W D0, FP4
FTWOTOX. X FP4
FMOVE. W #1, FP5
FDI V. X FP4, FP5

FP5: 1/ (2"dest Scal e (rul Fact or)

MOVEA. L srcPtri1(A6), Al
MOVEA. L srcPtr2(A6), A2
MOVEA. L destPtr(a6), A3

MOVE. L srcSize(A6), DO
TST. W oper ati on(A6)
BLT. S SubLoop2
AddLoop2 FMOVE. W (A1) +, FP1 ;
FMOVE. W (A2)+, FP2 ;
FMUL. X FP6, FP1 ;
FMUL. X FP7, FP2 ;
FADD. X FP2, FP1 ;
FMUL. X FP5, FP1 ;
FMOVE. W FP1, (A3)+ ;
SUBQ L #1, DO ;
BGT. B AddLoop2 |
BRA. S exit |
SubLoop2 FMOVE. W (A1) +, FP1 ;
FMOVE. W (A2)+, FP2 ;
FMUL. X FP6, FP1 ;
FMUL. X FP7, FP2 ;
FSUB. X FP2, FP1 ;
FMUL. X FP5, FP1 ;
FMOVE. W FP1, (A3)+ ;
SUBQ L #1, DO ;
BGT. B SubLoop2 |
exit FMOVEM X (SP)+, UsedFRegs ;
MOVEM L (SP) +, UsedRegs ;
UNLK A6 ;
MOVE. L (SP)+, A0 ;
ADDA. W #26, SP ;
JIMP (A0) ;
DC. B ' ADSB2BFF' ; MacsBug Name
ENDPROC
Hedc2Buf sF PROC EXPORT
procedure Hcdc2Buf sF(srcPtrl: ptr;
srcPtr2: ptr;
destPtr: ptr;
srcScal el: i nteger;
srcScal e2: i nteger;
var dest Scal e: i nt eger; (ptr)
r owr ds: i nt eger;
operati on: i nteger);

procedure Hcdc2Buf sF (for Hartley Convol ve or Deconvolve or Correlate two Buffers w FPU)
is a feature packed routine that performs the Hartley anal og of conplex nultiplication
or division or conjugate multiplication on 2 rowMrds x rowrds integer Hartley
transformbuffers pointed to by srcPtrl and srcPtr2, placing the result in

the Hartley transformbuffer pointed to by destPtr. Al three of these conputations

are so sinilar (and the addressing so conplex) that they have been | unped togehter

in one routine.

The operations on HL and H2 (srcl and src2) can be expressed using Bracewell's notation
(p 43, 'The Hartley Transform) as

(Convol ution): HL(+f)*He + H1(-f)*Ho
(Deconvol ution): (HL(+f)*He - HL(-f)*H2o)/ (H2(+f)"2 + H2(-f)"2)
(Correl ation): HL(+f)*H2e - H1(-f)*Ho

The operation desired is specified by the operation paranter as follows:
operation function performed

<0 Hartley Miltiplication (for Convol ution)
=0 Hartl ey Division (for Deconvol ution)
>0 Hartley Conjugate Miltiplication (for Correlation)

As in PSFHT2D and other routines, this calculation nust be perforned twice. The first
time through, only the naxi mum and nini num val ues of the output are recorded. Fromthe
extrema, a linear mapping fromthe 32 bit output into the 16 bit output buffer is
devised. On the second tine through, this mapping is used to store the conputed result
into the output buffer.

The order of arguments is not inportant for nultiplication (convolution) as it conmutes,
however, for division and conjugate nultiplication the operations are

srcl/src2 and srcl(src2)* respectivley, where * indicates conjugation.

NOTE: this acconplishes with one | oop what PSFHT2D does with two | oops and two speci al

cases; the addressing cal culation involved here does not take long in conparison

113

114

| with PSFHT2D, so that routine should be nodified to use this nore conpact format.
; NOTE: rowwbrds MUST be a power of 2; this routine is designed to work exclusively on

| square, two-dinensional integer matrices.

; NOTE: Autocorrel ation needs only half the operations that correlation needs; this is

| not taken advantage of here; TH S ROUTINE IS NOT OPTIM ZED AT ALL.

; NOTE: FPU used here.

srcPtrl EQU 28 ;. A6 Ofsets
srcPtr2 EQU 24 ;
dest Ptr EQU 20 |
srcScal el EQU 18 |
srcScal e2 EQU 16 |
dest Scal e EQU 12 |
r owbr ds EQU 10 |
operation EQU 8 |
UsedRegs REG D2- D7/ A2- A4
UsedFRegs FREG FP2- FP7

start LI NK A6, #0 ;

MOVEM L UsedRegs, -(SP) ;
FMOVEM X UsedFRegs, -(SP) ;

FMOVE. W srcScal e1(A6), FP6

FTWOTOX. X FP6 . FP6: scalel
FMOVE. W srcScal e2(A6), FP7 ;
FTWOTOX. X FP7 . FP7: scal e2
MOVE. W operation(A6), DO ; DO: * | operation
SWAP Do ;
MOVE. W rowr ds(A6), DO ; DO: operation | rowrds
MOVEA. L srcPtri1(A6), Al ; Al: srcPtrl
MOVEA. L srcPtr2(A6), A2 i A2: srcPtr2
MOVE. W #15, D2
| ogLoop BTST. L D2, DO
DBNE. W D2, |ogLoop D2: | 0og2(r owWdr ds)

MOVE. W D2, D1

slBQW #1, DL
MMVE W DL D2
MVE W DL, D3

D1: | o0g2(rowrds) | nmod nask & col umm count
D2: col um counter
D3: row counter

MVE. W D0, DL :
: FPA: mn

FMOVE. L #$TFFFFFFF, FP4
FMOVE. L #$80000000, FP5 FP5: max
RCLoopl MOVE. W D3, D4 ;
EXT. L > ;
SWAP D1 ;
ASL. L D1, D4 ; DAt N * row
SWAP D1 ;
MOVE. W D2, D5 ;
EXT. L D5 ;
ADD. L D5, D4 ; D4: N* row + col
ASL. L #1, D4 ; D4: even (word) address of H(r, c)
MOVEA. L D4, A3 ; A3: address of H(row, col)
MOVE. L D3, D4 ;
MOVE. W Do, D5 ; DB N
SUB. W D4, D5 ; DB N - row
AND. W D1, D5 ; D4 (N - row) nod N = nodRow
EXT. L D5 ;
SWAP D1 ;
ASL. L D1, D5 ; D4: N * nodRow
SWAP D1 ;
MOVE. W Do, D6 ; D6: N
SUB. W D2, D6 ; D6: N - col
AND. W D1, D6 ; D6: (N - col) nod N = nodCol
EXT. L D6 ;
ADD. D6, Db ; D4: N * nodRow + nodCol
ASL. L #1, Db ; D4: even (word) address of H(nmodRow, nodCol)
MOVEA. L D5, A4 ; Ad: address of H(nmodRow, nodCol)
; address cal cul ati on done
FMOVE. W 0(A2, A3.L), FPO ; FPO: H2(r,c)
FMUL. X FP7, FPO ;

FMOVE. X FPO, FP1
FMOVE.W 0(A2, A4.L), FP2

. FP2: H2(nmodRow, modCol)
FML. X FP7, FP2 :

FADD. X FP2, FPO

FSUB. X FP2, FP1

FD V. W #2, FPO FPO: H2even
FD V. W #2, FP1 FP1: Hodd

MOVE. L Do, D7 ; because a swap will change CCR's Z & N bits
SWAP D7 ;
TST. W D7 ;

BGT. W Corrl

Deconvl

not Zer ol

not M nl

not Max1

Convl

not M n2

not Max2

Corrl

not M n3

BLT.B

FMOVE. X
FMUL. X
FMOVE. X
FMUL. X
FADD. X
FMJL. W
FBNE. W
FMOVE. W
FMOVE. W
FMUL. X
FMUL. X
FMOVE. W
FMUL. X
FMUL. X
FSUB. X
FDI V. X
FCWP. X
FBGE. W
FMOVE. X
FCWP. X
FBLE. W
FMOVE. X
BRA. S

FMOVE. W
FMOVE. W
FMUL. X
FMUL. X
FMUL. X
FMUL. X
FADD. X
FCWP. X
FBGE. W
FMOVE. X
FCWP. X
FBLE. W
FMOVE. X
BRA. S

FMOVE. W
FMOVE. W
FMUL.
FMUL.
FMUL.
FMUL.
FSUB.
FCWP.
FBCGE.
FMOVE. X
FCWP. X

FBLE. W
FMOVE. X

S XX X X X X

; calculation conplete

GoOnl

; First traversal

Bi gger 2

not Zer 02

Gon2

DBRA. W

MOVE. W
DBRA. W

done - max

MOVEA. L
FABS. X
FABS. X
FCWP. X
FBGT. W
FMOVE. X
FMOVE. W
FCWP. X
FBNE. W
FMOVE. W
CLR W
FLO&2. X
FMOVE. W
FCWP. X
FBLT. W
FSUB. X
FADD. W
FINTRZ. X
FMOVE. W
MOVE. W
FMOVE. W
FTWOTOX. X
FMOVE. W
FDI V. X

Convl

FPO, FP2
FP2, FP2
FP1, FP3
FP3, FP3
FP3, FP2
#2, FP2
not Zer ol
#1, FP2
0(A1, A3.L), FP3
FP6, FP3
FP3, FPO
0(Al1, A4. L), FP3
FP6, FP3
FP3, FP1
FP1, FPO
FP2, FPO
FP4, FPO
not M nl
FPO, FP4
FP5, FPO
not Max1
FPO, FP5
GoOnl

0(Al1, A3.L), FP2
0(Al1, A4.L), FP3
FP6, FP2

FP6, FP3

FP2, FPO

FP3, FP1

FP1, FPO

FP4, FPO

not M n2

FPO, FP4

FP5, FPO

not Max2

FPO, FP5

GoOnl

0(Al, A3.L), FP2
0(Al1, A4.L), FP3
FP6, FP2

FP6, FP3

FP2, FPO

FP3, FP1

FP1, FPO

FP4, FPO

not M n3

FPO, FP4

FP5, FPO

GoOnl

FPO, FP5

D2, RCLoopl

DI, D2
D3, RCLoopl

and nmin found

dest Scal e(A6), A0
FP4

FP5

FP4, FP5
Bi gger 2
FP4, FP5
#0, FP4
FP4, FP5
not Zer 02
#1, FP5
D5

FP5

#13, FP4
FP4, FP5
GoOn2
FP4, FP5
#1, FP5
FP5

FP5, D5
D5, (A0)
D5, FP4
FP4

#1, FP5
FP4, FP5

FP2: sqr(He)

FP3: sqr (H20)
FP2: sqr(H2e) + sqgr(H2o) [= (H2"2 + H2(-)"2)/2]
FP2: = sqr(H2) + sqr(H2(-)) = denom nator

to prevent divide by zero

FP3: HL(r,c)
FPO: HL(r,c)* Heven

FP3: Hl(nodRow, nodCol)

FP1: Hl(nodRow, nodCol)* H2odd
FPO: deconv nunerat or

FPO: ratio

FP2: Hi(r,c)
FP3: Hl(nodRow, nodCol)

FPO: HIL(r, c)*Heven
FP1: Hl(nodRow, nodCol)*H2odd

FP2: Hi(r,c)
FP3: Hl(nodRow, nodCol)

FPO: HIL(r, c)*Heven
FP1: Hl(nodRow, nodCol)*H2odd

Restore col um counter

AO: @lest Scal e
FP4: abs(m n)
FP5: abs(max)

FTST woul dn't work in MPW2.02's asml

D5: dest Scal e

Round Up to next integer

D5: dest Scal e

dest Scal e stored

FP4: dest Scal e

FP4: 2~dest Scal e (di vFactor)

FP5: 1/ (2"dest Scal e (rul Fact or)

115

116

’

mappi ng set up - restore row and col um counters,

RCLoop2 MOVE. W

’

address cal cul ati on done

FMOVE. W
FMUL. X
FMOVE. X
FMOVE. W
FMUL. X
FADD. X
FSUB. X
FD V. W
FD V. W

MOVE. L
SWAP
TST. W
BGT. S
BLT. S

Deconv?2 FMOVE. X

FMUL. X
FMOVE. X
FMUL. X
FADD. X
FMUL. W
FBNE. W
FMOVE. W

not Zer 03 FMOVE. W

FMUL. X
FMUL. X
FMOVE. W
FMUL. X
FMUL. X
FSUB. X
FDI V. X
BRA. S

Conv2 FMOVE. W

FMOVE. W
FMUL. X
FMUL. X
FMUL. X
FMUL. X
FADD. X
BRA. S

Corr2 FMOVE. W

’

FMOVE. W
FMUL. X
FMUL. X
FMUL. X
FMUL. X
FSUB. X

cal cul ation conplete

srcPtr1(A6),
srcPtr2(A6),
dest Ptr (A6),

D1, D2
D1, D3

¥

FRER BZRR H R

RBE 888 &

FESERRNBRRRERREBR REHBERRERRERE

0(A2, A3

FP7, FPO
FPO, FP1

0(A2, A4

FP7, FP2
FP2, FPO
FP2, FP1
#2, FPO
#2, FPL

Do, D7
D7

D7
Corr2
Conv2

FPO, FP2
FP2, FP2
FP1, FP3
FP3, FP3
FP3, FP2
#2, FP2

not Zer 03
#1, FP2

0(AL, A3

FP6, FP3
FP3, FPO

0(AL, A4

FP6, FP3
FP3, FP1
FP1, FPO
FP2, FPO
Gon3

0(AL, A3
0(AL, A4

FP6, FP2
FP6, FP3
FP2, FPO
FP3, FP1
FP1, FPO
Gn3

0(AL, A3
0(AL, A4

FP6, FP2
FP6, FP3
FP2, FPO
FP3, FP1
FP1, FPO

L,

L,

L,

L,

L,
L,

L,
L,

Al
A2
A0

FPO

FP2

FP3

FP3

FP2
FP3

FP2
FP3

ERR H8Y B

etc. for next traversal

88

BRE

R&H

FP2:

FPO:
FP1:

col counter
row counter

N * row

N * row + col
even (word) address of H(r, c)
address of H(row, col)

N

N - row

(N - row) nmod N = nodRow
N * nmodRow

N

N - col

(N - col) nmod N = nodCol

N * nodRow + nodCol
even (word) address of H(nmobdRow, nodCol)
address of H(nmodRow, nodCol)

H2(r, c)

H2(modRow, nodCol)

H2even
H2odd

because a swap will change CCRs Z & N bits

FP2:

FP3:
FP2:
FP2:

sqgr (Hz2e)

sqgr (H20)
sgr(H2e) + sqgr(H20) [= (H2"2 + H2(-)"2)/2]
= sqr(H2) + sqgr(H2(-)) = denom nator

to prevent divide by zero

FP3:
FPO

FP3:
FP1:
FPO:
FPO:

FP2:
FP3:

FPO
FPL:

FP2:
FP3:

FPO:
FP1:

Hi(r, c)
Hi(r,c)* Heven

Hl(nmodRow, nodCol)

Hl(modRow, nodCol)* H2odd
deconv nuner at or

ratio

Hi(r, c)
Hl(nmodRow, nodCol)

HL(r, c)*H2even
Hl(nodRow, nodCol) *H2odd

Hi(r, c)
Hl(nmodRow, nodCol)

HL(r, c)*Heven
HLl(nodRow, nodCol) *H2odd

exit

FMUL. X
FMOVE. W
DBRA. W

MOVE. W
DBRA. W

FMOVEM X
MOVEM L
UNLK
MOVE. L
ADDA. L
JwP

DC. B

ENDPROC

d i pM nMax PRCC

all of

’
,
,
,
,
,

baseAddr
buf Si ze

UsedRegs

start
| oop

not Zer ol

not Bi g1

not Zer 02

not Bi g2

exit

Dbl Mem

extreneties.

FP5, FPO
FPO, 0(A0, A3.L)
D2, RCLoop2

DI, D2
D3, RCLoop2

(SP) +, UsedFRegs
(SP) +, UsedRegs
A6

(SP)+, A0

#24, SP

(A0)

' HCDC2BFF'

EXPORT

procedure CipM nMax(baseAddr: ptr

buf Si ze: longint);

its 255 pixels to 254,
baseAddr points to an array of

EQU
EQU

REG

LI NK
MOVEM L
MOVE. L
MOVE. L
ASR L
MOVE. W

MOVE. W
MOVE. W
LSR W
AND. W

BNE. S
MOVE. W
Cwl . W
BLE. S
MOVE. W

TST. W
BNE. S
MOVE. W
Cwl . W
BLE. S
MOVE. W

LSL. W
R W
MOVE. W
SUBQ L
BGT. S
MOVEM L
UNLK
MOVE. L
ADDQ L
IWP

DC. B

ENDPROC

PRCC

procedure Dbl Men(srcPtr:

destPtr:
srcSize:

an 8 bit deep pixel map),

a 16 bit deep pixel

Thi s procedure takes an input block of nenory,
: with value 255 is napped into 8160;

12
8

D2- D3

A6, #0

UsedRegs, -(SP)
baseAddr (A6), A0
buf Si ze(A6), DO
#1, DO

#$00FF, D1

(A0), D2
D2, D3
#8, DB
DI, D2

not Zer ol
#1, D2

#254, D2
not Bi g1
#254, D2

D3

not Zer 02
#1, D3

#254, D3
not Bi g2
#254, D3

#8, D3
D2, D3
D3, (A0)+
#1, DO

| oop

(SP) +, UsedRegs
A6

(SP)+, A0

#8, SP

(A0)

' CPM NVAX'

EXPORT

ptr;
ptr;
I ongint);

,

,

,

FPO:

result scal ed down

result stored

Restore col um counter

MacsBug Nane

procedure CipMnMix is used on a PixMap to convert all of its O pixels to 1 and
t hereby avoi ding the sacred foreCol or and bgCol or

byt es buf Si ze | ong.

’

and copies it into a

srcSize is measured in bytes.

srcPtr

EQU

16

map. The byte with value 1
the val ues

’

D3:
D2:

baseAddr
buf Si ze
buf Si ze words
| ow Byte mask

1st byte

2nd byte

check 2nd byte

check 1st byte

store bytes back

MacsBug Nane

a sequence of bytes (e.g.
bl ock of menory twice the size -

is mapped into 32, while the byte
are sinply left shifted by 5 bits.

A6 of fsets

117

118

dest Ptr EQU 12 |
srcSi ze EQU 8 |
UsedRegs REG D2- D4
LI NK A6, #0 ; no locals (disco surfer!)

MVEM L UsedRegs, -(SP)

MOVEA. L srcPtr(A6), A0 ; AO: srcPtr
MOVEA. L destPtr(A6), Al ; Al: destPtr
MOVE. L srcSize(A6), DO ; DO: srcSize
ASR. L #1, DO ; DO: srcSize in words
MOVE. W #5, D1 ; D1: numbits to shift
MOVE. W #$00FF, D2 ; D2: | ow byte mask
| oop MOVE. W (A0)+, D3 ;
MOVE. W D3, D4 ;
LSR W #8, D3 ; D3: 1st byte
AND. W D2, D4 ; D4: 2nd byte
ASL. W D1, D3 ;
ASL. W D1, D4 ;
SWAP D3 ;
MOVE. W D4, D3 ;
MOVE. L D3, (Al)+ :
SUBQ L #1, DO ;
BGT. S | oop |
exit MOVEM L (SP) +, UsedRegs ; restore registers
UNLK A6 ;
MOVE. L (SP)+, A0 ;
ADDA. W #12, SP ; pop paraneters
JMP (A0) ;
DC. B ' DBLMEM ; MacsBug Nane
ENDPROC
I nt ToByt eF PRCC EXPORT

procedure | ntToByteF(srcPtr: ptr;
destPtr: ptr;
rowwrds: integer);

; procedure I ntToByte scans the rowwrds”2 matrix of integers pointed

; to by srcPtr recording the nmaxi mum and nini num val ues.

; These are then used to define a linear napping onto the byte range 0-255.

; A second pass over the integer array is then nade to map the integers

; into the rowwrds”2 byte matrix pointed to by destPtr.

; IntToByteT differs fromIntToByte in that it uses the FPU for the |inear

; mapping and is therefore slower, but sinpler to read, smaller and nore accurate.

srchPtr EQU 14 ; A6 offsets
dest Ptr EQU 10 |
r owbr ds EQU 8 |
UsedRegs REG D2/ D6- D7 |
start LI NK A6, #0 ;
MOVEM L UsedRegs, -(SP) ;
MOVE. L srcPtr(A6), A0 ; AO: srcPtr
MOVE. W rowr ds(A6), DO ; DO: rowwrds
MOVE. W #$T7FFF, D6 ; D6: ninval
MOVEQ L #0, D7 ;
BSET. L #15, D7 ;. D7: maxVal
MILS. W DO, DO ; DO: srcSize
MOVE. L Do, D1 ; Dl: count
scanLoop MOVE. W (A0) +, D2 ;
CWP. W D6, D2 ;
BGT. S not M n |
MOVE. W D2, D6 ;
not M n CWP. W D7, D2 |
BLE. S not Max ;
MOVE. W D2, D7 ;
not Max SUBQ L #1, D1 ;
BGT. S scanLoop ; max & mn found
SUB. W D6, D7 ; D7: range
BNE. S not Zer o ;
MOVE. W #1, D7 ;
not Zer o FMOVE. W D7, FPO ; FPQ range
FMOVE. W #255, FP1 ;
FDI V. X FPO, FP1 ; FP1: mul Factor (scale)
MOVE. L srcPtr(A6), A0 ; AO: srcPtr

MOVE. L destPtr(A6), Al ; Al: destPtr

st or eLoop

exit

SwapBBl ock

ASR L
MOVE. L
MOVE. L

SUB. W
SUB. W
FMOVE. W
FMUL. X
FMOVE. W

FMOVE. W
FMUL. X
FMOVE. W

LSL. W
R W
MOVE. W

SUBQ L
BGT. S

MOVEM L
UNLK
MOVE. L
ADDA. W
JwP

DC. B

ENDPROC

PRCC

#1, DO
(AQ)+, DL
DI, D2

D2

D6, DL
D6, D2
D2, FPO
FP1, FPO
FPO, D2

DL, FPO
FP1, FPO
FPO, DL

#3, D2
D2, DL
DL, (A1)+

#1, DO
st or eLoop

(SP) +, UsedRegs
A6

(SP)+, A0

#10, SP

(A0)

' I NTOBYTF'

EXPORT

; procedure SwapBBl ock(nmatPtr: ptr;
; rowBytes: integer);

’

procedure SwapBBl ock rearranges the square nmatrix of BYTES pointed to by natPtr.

’

DO:
Dl: 2nd word (2 words at at tine)

D2:

count

1st word

MacsBug Nane

; rowBytes nust be a power of 2 >= 4. The noves are word sized.
; It swaps the matrix's 2nd and 4th quadrants and its 1st and 3rd quadrants, so

that the transformis centered in the matrix.

mat Pt r
r owByt es

UsedRegs

start

| ogLoop

| oop

EQU
EQU

REG

LI NK

MOVEM L
MOVE. L
MOVE. W

EXT. L
MOVE. L
ASR L

MOVE. W
BTST. L
DBNE. W
SUBQ W
MOVE. L
ASL. L

s

g
2
=

10
8

D2- D7/ A2- A3

A6, #0

UsedRegs, -(SP)

mat Ptr (A6), A0

rowByt es(A6), DO

BB
28

28
288 RBBR ZBRERE B8R

’

A6 of fsets

D1:

this nust be pos,
D2:
D2:
D2:

D3:

r owByt es

rowBytes div 2

?? | Log2(rowBytes)

rowBytes”2 div 2

Quad 2 ptr

Quad 1 ptr
Quad 3 ptr

Quad 4 ptr

r owr ds
rowwrds -

col | col

row

1

word si zed.

119

120

Tr anspose

; procedure transpose(nmatPtr:

,

MOVE. L D2, D4
SWAP D4
MOVE. W D4, D2
ADDA. L D1, AO
ADDA. L D1, Al
ADDA. L D1, A2
ADDA. L D1, A3
DBRA. W D3, | oop
MOVEM L (SP) +, UsedRegs
UNLK A6
MOVE. L (SP)+, A0
ADDQ. L #6, SP
JIMP (A0)
DC. B ' SWPBBLOK'
ENDPROC
PROC EXPORT
ptr;
rowwrds: integer);

,

restore col

updat e the

count er

address ptrs

MacsBug Nane

; procedure transpose transposes a rowrds x rowrds matrix of words.
; WARNING the integer block pointed to by matPtr nust have r owr ds”2
; words allocated to it.

this is done.

mat Pt r
r owor ds

UsedRegs

r owLoop

col Loop

exit

ToRCFHT

EQU
EQU

REG

LI NK
MOVEM L
MOVE. L
MOVE. W
EXT. L
MOVE. L
ASL. L
MOVE. L

SUBQ L
MOVE. L
SUBQ L
MOVE. L
MOVE. L
MULU. W
MILU. W

SUB. L
SUBQ L
OWP. L
BNE. S

SUBQ L
SUB. L
BGE. S

MOVEM L
UNLK
MOVE. L
ADDQ L
IWP
DC. B

ENDPROC

PRCC

procedure t oRCFHT(mat Ptr:
r owwr ds:

10
8

D2- D7
A6, #0

UsedRegs, -(SP)
mat Ptr (A6), A0

rowr ds(A6), DO

Do
Do, D7
#1,
Do,

=8

#2,
D1,
#2,
D1,
D2,
D7,
D7,

E888% ¥BEBRRR

0(A0, D6.L), D7
0(A0, D5. L),
D7, 0(AO, D5. L)

Do, D6
#2, Db
D5, D6
col Loop

#2, D2
Do, D4
r owLoop

(SP) +,
26
(SP)+, A0
#6, SP
(A0)

UsedRegs

' TRANSPCS'

EXPORT

Ptr;
i nteger);

0(A0, D6.

(it must be a square matrix).

,

g8

’

L)

’

’
’
’
’
’

’

procedure TORCFHT takes a matrix of words which

A6 of fsets

No checki ng for

no locals (ny wave!)

Base Address

counterl
make it

integers =

| ong

2 bytes long -> all

Dl: rowwrds - 1 == col

D2: rowwrds - 2 == row

D5: Addl =

D6: Add2 =

col * N
row * N

rowrN + col

col *N + row

svap Addl & Add2

restore registers

pop paraneters

MacsBug Nane

has been 1D FHT' d row

; by row and col by col and produces a real
he pascal unit FFTnFHT. p,

; Fromt

+
+

for row:=0 to maxN div 2 do
:= 0 to maxN div 2 do begin
(maxN - row) nod maxN,

{ see Bracewell,

+ Q) /
E

E
E

_EY

the algorithmis:

2;

| for col

; nRow : =

| nCol := (maxN - col) nod nmaxN;
| A := x[row, col];
| B := x[nRow, col];
| C:= x[row, nCol];
| D := x[nRow, nCol];
; E:=((A+D - (B
| x[row, col] := A -
| x[mRow, col] := B
| x[row, mCol] :=C
| x[mMRow, nCol] := D
| end;

121

2D FHT fromthe result

{ Now cal cul ate actual Hartley transform}

'Fast 2D Hartley Transf.' |EEE Procs. 9/86 }

WARNI NG the integer block pointed to by natPtr nust have rowWrds”2

words allocated to it.

; this is done.

done for this either.

mat Pt r
r owr ds

UsedRegs

| ogLoop

r owLoop

EQU
EQU

REG

LI NK

:

s ssrss ss sr

SWAP

ASL. L
MOVEA. L

MOVEQ L
MOVE. W
ADD. L
ASL. L
MOVEA. L

MOVEQ L
MOVE. W
ADD. L
ASL. L
MOVEA. L

Furt her nor e,

(it must be a square matrix). No checking for

10

8

D2- D7/ A2- A4
A6, #0
UsedRegs,
mat Pt r (A6),
r owor ds(A6) ,
Do, D1
#1, DO
Do

D1, DO
#15, D2
D2, D1
D2, |ogLoop
D2, D1
D1

Do, D1
#1, D1
D1, D2
D2

D1, D2
#0, D3
#0, D4
#0, D5
#0, D6
#0, D7
Do, D3
Do, D4
D1, D3
D2, D4
Do

Do, D3
Do, D4
Do

D1, D5
D1

D1, D3
D1, D5
D1

D2, D6
D5, D6
#1, D6
D6, Al
D2, D7
D3, D7
#1, D7
D7, A2
#0, D6
D4, D6
D5, D6
#1, D6
D6, A3
#0, D7
D4, D7
D3, D7
#1, D7
D7, A4

-(SP)

DO

’

rowwrds nust be a power of 2; no checking is

A6 O fsets

no | ocal s (shoul der-hopper!)

Base Address
counter

D0: mask | maxN

D1: log2(maxN) | row O

D2: col | col

clear the registers...
for mxed wl operations

MaxN - row
MaxN - col

(MaxN - row) nod maxN
(MaxN - col) nod maxN

nmRow
nCol

8 R8

maxN * nRow
maxN * row

%8

maxN * row + col
integers -> doubl e addr
Al: (A

maxN * nRow + col
integers take 2 bytes
A2: (B)

make space

maxN * row + nCol
integers take 2 bytes

A3: (O
make space
maxN * nRow + nCol

even addresses for int's
Ad: (D

122

MOVE. W 0(A0, Al.L), D3 ; D3: A
MOVE. W 0(A0, A2.L), D4 ; D4 B
MOVE. W 0(A0, A3.L), Db ; Db: C
MOVE. W 0(A0, A4.L), D6 ; D6: D
MOVE. W D6, D7 ;
ADD. W D3, D7 ; DIt A+ D
SUB. W D4, D7 ; D7: A+D-B
SUB. W D5, D7 ; D7: (A+D) - (B+O)
ASR W #1, D7 ; D7: E (no Rounding!!)
BEQ S conti nue ; E=0 -> no changes
SUB. W D7, D3 ; D3t A- E
ADD. W D7, D4 ; DAt B+ E
ADD. W D7, D5 ; Db: C+ E
SUB. W D7, D6 ; D6: D- E
MOVE. W D3, O(A0, Al.L) ;
MOVE. W D4, O(A0, A2.L) ;
MOVE. W D5, O(AO0, A3.L) ;
MOVE. W D6, 0(A0, A4.L) ; all values stored
conti nue DBRA D2, rowLoop |
MOVE. L D2, D3 ;
SWAP D3 ;
MOVE. W D3, D2 ; restore col counter
DBRA D1, rowLoop ;
exit MOVEM L (SP) +, UsedRegs ; restore registers
UNLK A6 ;
MOVE. L (SP)+, A0 ;
ADDQ L #6, SP ; pop paraneters
JMP (A0) ;
DC. B ' TORCFHT ; MacsBug Nane
ENDPROC
psFHT2D PRCC EXPORT

procedure psFHT2D(srcPtr: ptr;
destPtr: ptr;
rowwrds: integer;
scal eType: integer);

function psFHT2D conputes the power spectrum of a 2D FHT.

srcPtr points to a matrix of integers containing the transform

destPtr points to a matrix of bytes in which the scal ed power spectrum of
the transformis witten. the matrix pointed to by srcPtr is

rowwrds x rowwrds in size. rowwrds nmust be a power of 2.

psFHT2D first scans the src matrix to deternine the |argest and
smal | est el ements of the power spectrum A scaling function
based on these extrenes is devel oped according to 'scal eType'
as foll ows:

scal eType scal i ng i npl ement ed:
<=0 I'i near
1-9 nth root (1st root = linear)
>=10 | og

Next, the src matrix is scanned again, this time the power

spectrum at each point is again conputed and scaled to a byte size

before being stored in the dest natrix.

The necessity of scanning the matrix twice was originally avoided by
approxi mating the power spectrumelement (a2 + b"2)/2 by (|a] + |b])/2,
but while this avoided many nmultiplications, it occasionally produced
spurious results.

Here, sone addressing cal cul ati ons have been avoi ded by splitting up the
matrix traversal into four separate sections: two |oops and two el ements.
A nore conpact formof simlar addressing may be found above in Hcdc2Bufs.

regi ster map

; DO r owbr ds A0 srchPtr

;D1 mask Al dest Ptr

; D2 | oop counter A2 | ongOffset
; D3 scratch A3 short O f set
;D4 scratch

; Db scratch

. FPO scratch

. FP1 nmul Fact or

; FP2 1/n (for nth root mappi ng)

srcPtr EQU 16 ; A6 offsets
dest Ptr EQU 12 |

r owbr ds EQU 10 |

scal eType EQU 8

UsedRegs

start

| oopl

noMbd1

not M nl

not Max1

not M n2

not Max2

not M n3

not Max3

REG D2- D7/ A2- A3
LI NK A6, #0
MOVEM L UsedRegs,
FMOVE. X FP2, -(SP)
MOVE. L srcPtr(A6),
MOVE. W r owor ds(A6) ,
EXT. L DO

MOVE. W Do, D1
SUBQ W #1, D1
EXT. L D1

MOVE. W Do, D2
MILS. W D2, D2
MOVE. L D2, -(SP)
MOVEA. L D2, A2
ADDA. L D2, A2
SUBA. L #2, A2
MOVE. W Do, D3
EXT. L D3

MOVEA. L D3, A3
ADDA. L D3, A3
ADDA. L #2, A3
MOVE Do, D3
EXT. L D3

ASR L #1, D3
ASR L #1, D2
SUB. L D3, D2
MOVE. L #$7FFFFFFF, D6
MOVEQ L #0, D7
BSET. L #31, D7
MOVE. L A3, D3
MOVE. L D3, D4
ASR L #1, D4
AND. L D1, D4
BNE. S noMbd1
MOVE. W Do, D4
EXT. L >

ADD. L D4, D4
SUB. L D4, D3
MOVE. W 0(A0, D3.L),
MOVE. W 0(A0, A2.L),
MILS. W D4, D4
MILS. W D5, D5
ADD. L D5, D4
CWP. L D6, D4
BCGE. S not M nl
MOVE. L D4, D6
CWP. L D7, D4
BLE. S not Max1
MOVE. L D4, D7
SUBQ L #2, A2
ADDQ L #2, A3
SUBQ L #1, D2
BGT. S | oopl
MOVE. L (SP), D3
MOVE. W 0(A0, D3.L),
MILS. W D, D4
ADD. L D4, D4
CWP. L D6, D4
BCGE. S not M n2
MOVE. L D4, D6
CWP. L D7, D4
BLE. S not Max2
MOVE. L D4, D7
MOVE. W (A0), D4
MILS. W D4, D4
ADD. L D4, D4
CWP. L D6, D4
BCGE. S not M n3
MOVE. L D4, D6
CWP. L D7, D4
BLE. S not Max3
MOVE. L D4, D7

; now check top Row
MOVE. L #2, A3
MOVE. W Do, D3
EXT. L D3

ADD. L D3, D3
SUBQ L #2, D3
MOVE. L D3, A2

3

AO:

D1:

for

BRRE

nmod

R&R

check m ddl e el enent,

srchtr
r owr ds

nmod rowr ds nask

| ater

| ongOf f set

short O f set

rowwrds div 2
rowwrds”2 div 2
count

m nVal

maxVal

r owr ds

an2
b"2
ar2 + b2

1st col um

check Oth natrix el ement

A3:

A2:

short O f set

| ongOf f set

123

124

MOVE. L Do, D2 ;
ASR. L #1, D2 ; D2: counter
| oop2 MOVE. W 0(A0, A2.L), D4 |
MOVE. W 0(A0, A3.L), D5 ;
MILLS. W D4, D4 ;
MILLS. W D5, D5 ;
ADD. L D5, D4 ; D4 ar2 + br2
CWP. L D6, D4 ;
BCE. S not M n4 |
MOVE. L D4, D6 ;
not M n4 CWP. L D7, D4 |
BLE. S not Max4 ;
MOVE. L D4, D7 ;
not Max4 SUBA. L #2, A2 ;
ADDA. W #2, A3 ;
SUBQ L #1, D2 ;
BGT. S | oop2 ; done checking at |ast!
19
SUB. L D6, D7 ; D7: range
BNE. S findScal e |
MOVEQ L #1, D7 ;
findScal e MOVE. W scal eType(A6), D4 ;
BLE. S I'i nMapl ; scal eType <= 0 -> |inear Mapping
owP. W #10, D4 ;
BCGE. S | ogMapl ; scal eType >= 10 -> | og Mappi ng
root Mapl FMOVE. L #1, FP2 ; 0 < scaleType < 10 -> nth root mapping
FDI V. W D4, FP2 ; FP2: 1/n
FLOGN. L D7, FPO ; FPO: In(range)
FMUL. X FP2, FPO ; FPO: 1/n * In(range)
FETOX. X FPO, FPO ; FPO: e™(1/n * In(range)) = range”(1/n)
MOVE. W #2, Db ; D5: Scal eType = 2 -> nth root
BRA. S GoOnl ;
I'i nMapl FMOVE. L D7, FPO ;
MOVE. W #1, Db ; Db: ScaleType = 1 -> linear
BRA. S GoOnl ;
| ogMapl SUBQ L #1, D6 ;mn:=mn- 1; to prevent |og(0)
ADDQ L #1, D7 ; Wwhich increases range by 1
FLOX. L D7, FPO ;
MOVE. W #3, Db ; Db: ScaleType = 3 -> log
GoOnl FMOVE. L #255, FP1 ;
FDI V. X FPO, FP1 ; FP1: nmul factor
MOVE. L D5, D7 ; D7: Copy of Scal eType
; D6: mnVval
doPS MOVE. L destPtr(A6), Al ; conpute body of PS
MOVE. L (SpP), D2 ;
MOVEA. L D2, A2 ;
ADDA. L D2, A2 ;
SUBA. L #2, A2 ; A2: longOrFfset
MOVE. W Do, D3 ;
EXT. L D3 ;
MOVEA. L D3, A3 ;
ADDA. L D3, A3 ;
ADDA. W #2, A3 ; A3: shortOfset
MOVE Do, D3 ;
EXT. L D3 ;
ASR. L #1, D3 ; D3: rowwrds div 2
ASR. L #1, D2 ; D2: rowwrds”2 div 2
SUB. L D3, D2 ; D2: count
| oop3 MOVE. L A3, D3 |
MOVE. L D3, D4 ;
ASR. L #1, D4 ;
AND. L D1, D4 ;. nmod rowwr ds
BNE. S noMbd?2 |
MOVE. W Do, D4 ;
EXT. L D4 ;
ADD. L D4, D4 ;
SUB. L D4, D3 ;
noMbd2 MOVE. W 0(A0, D3.L), D4 ;
MOVE. W 0(A0, A2.L), D5 ;
MILLS. W D4, D4 ;
MILLS. W D5, D5 ;
ADD. L D5, D4 ; D4 x"2 + yn2
SUB. L D6, D4 ; D4 " - minval
MOVE. W D7, Db ; D5: scal eType
SUBQ W #1, D5 ;
BEQ S I'i nMap2 |
SUBQ W #1, D5 ;
BEQ S r oot Map2 ;

| ogMap2

I'i nMap2

r oot Map2

Gon2

| ogMap3

I'i nMap3

r oot Map3

| ogMap4

I'i nMap4

r oot Map4

FLOX. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn2
FMOVE. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn2
FLOGN. L D4, FPO
FMUL. X FP2, FPO
FETOX. X FPO, FPO
FMUL. X FP1, FPO
FMOVE. L FPO, D4
MOVE. L D3, D5
ASR. L #1, D5
MOVE. B D4, O(A1l, Db.L)
MOVE. L A2, D5
ASR. L #1, D5
MOVE. B D4, O(A1l, Db.L)
SUBQ L #2, A2
ADDQ. L #2, A3
SUBQ L #1, D2
BGT. S | oop3
MOVE. L (SP)+, D3
MOVE. W 0(A0, D3.L), D4
MILLS. W D4, D4
ADD. L D4, D4
SUB. L D6, D4
MOVE. W D7, D5
SUBQ W #1, D5
BEQ S I'i nMap3
SUBQ W #1, D5
BEQ S r oot Map3
FLOR. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn3
FMOVE. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn3
FLOGN. L D4, FPO
FMUL. X FP2, FPO
FETOX. X FPO, FPO
FMUL. X FP1, FPO
FMOVE. L FPO, D4
MOVE. L D3, D5
ASR. L #1, D5
MOVE. B D4, O(A1l, Db.L)
MOVE. W (A0), D4
MILLS. W D4, D4
ADD. L D4, D4
SUB. L D6, D4
MOVE. W D7, D5
SUBQ W #1, D5
BEQ S I'i nMap4
SUBQ W #1, D5
BEQ S r oot Map4
FLOR. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn4
FMOVE. L D4, FPO
FMUL. X FP1, FPO
BRA. S GoOn4
FLOGN. L D4, FPO
FMUL. X FP2, FPO
FETOX. X FPO, FPO
FMUL. X FP1, FPO
FMOVE. L FPO, D4
MOVE. B D4, (A1)
; now conpute top Row PS
MOVE. L #2, A3
MOVE. W Do, D3
EXT. L D3

ADD. L D3, D3
SUBQ L #2, D3
MOVE. L D3, A2

125

take | og
scale up to [0..255]

D4: scal ed out: should be in [0, 255]
Illdoesn't work on 68000

stored result bytes

conpute mddl e el emrent, 1st colum
D4: (x"2 + y*2) div 2

D4: " - mnVal
D6: scal eType

take | og
scale up to [0..255]

D4: scal ed out: should be in [0, 255]

Il'ldoesn't work on 68000

conpute Oth matrix el enent
D4: (x"2 + y*2) div 2

D4: " - mnVal
D6: scal eType

take | og
scale up to [0..255]

D4: scal ed out: should be in [0, 255]
Illdoesn't work on 68000

A3: short O f set

A2: 1 ongOffset

126

| oop4

| ogMap5

I'i nMap5

r oot Map5

exit

SUBA. L
ADDA. W
SUBQ L
BGT. S
FMOVE. X
MOVEM L
UNLK
MOVE. L

ADD. L
JWP

DC. B
ENDPROC

END

Do, D2
#1, D2

0(A0, A2.L), D4
0(A0, A3.L), D5

D4, D4
D5, D5
D5, D4
D6, D4
D7, D5
#1, D5
I'i nMap5
#1, D5

r oot Map5
D4, FPO
FP1, FPO
GoOn5
D4, FPO
FP1, FPO
GoOn5
D4, FPO
FP2, FPO
FPO, FPO
FP1, FPO
FPO, D4
D3, D5
#1, D5
D4, O(A1, Db.L)
A2, D5
#1, D5
D4, O(A1l, Db.L)
#2, A2
#2, A3
#1, D2

| oop4
(SP)+, FP2

(SP) +, UsedRegs
A6

(SP)+, A0

#12, SP

(A0)

' PSFHT2D '

,

D2: counter

D4: " - mnVal
D6: scal eType

take | og
scale up to [O.

D4: scal ed out:

. 255]

shoul d be in [0, 255]

Il'ldoesn't work on 68000

stored result bytes

done at |ast!

restore FP2

MacsBug Nane

BIBLIOGRAPHY

[1] Bracewdll, R. N., The Fourier Transform, Scientific American, June 1989.

[2] Cooley, J. W., and Tukey, J. W., An Algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation, 1965.

[3] Danielson, G.C., and C. Lanczos, Some Improvementsin Practical Fourier Analysis and
Their Application to X-Ray Scattering from Liquids, J. Franklin Institute, Vol.
233, 1942.

[4] Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, 1974.

[5] Artal, P., Avalos-Borja, M., Soria, A., Poppa, H., & Heinemann, K., Image Processing
Enhancement of High-Resolution TEM Micrographs of Nanometer-Sze Metal
Particles, Ultramicroscopy, July/August 1989.

[6] Rasband, W., Image 1.25 (Documentation), National Institues of Health, February 1990.

[7] Silverman, H. F., An Introduction to Programming the Winograd Fourier Transform
Algorithm (WFTA), |IEEE Trans. ASSP, April 1977.

[8] Patterson, R. W. & McCldlan, J. H. Fixed Point Error Analysis of Winograd Fourier
Transform Algorithms, IEEE Trans. ASSP, October 1978.

[9] Harris, D. B. McClédllan, J. H., Chan, D. H. K. & Schuesdler, H. W., Vector Radix Fast
Fourier Transform, IEEE ICASSP, 1977.

[10] Dudgeon, D. E., & Mersereau, R. M., Multidimensional Digital Sgnal Processing,
Prentice-Hall, 1984.

[11] Gibson, R. M., & McCabe, D. P., Fourier Transform Algorithm Implementations on a
General Purpose Microprocessor, IEEE ICASSP, Vol. 2., 1981.

[12] Despain, A. M., Very Fast Fourier Transform Algorithms Hardware for Implementation,
|[EEE Trans. Computer, C-28, May 1979.

[13] Sorensen, H. V., Jones, D. L., Heideman, M. T., & Burrus, C. S., Real Valued Fast Fourier
Transform Algorithms, |IEEE Trans. ASSP, Vol. 35, No. 6, June 1987.

[14] Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T., Numerical
Recipes, Cambridge University Press, 1986.

[15] Bracewell, R. N., The Hartley Transform, Oxford University Press, 1986.

[16] Hartley, R. V. L., A more symmetrical Fourier analysis applied to transmission problems,
Proc. IRE, March 1942.

[17] Bracewel, R. N., The Fast Hartley Transform, Proc. IEEE. Vol. 72, No. 8, August 1984.

127

128

[18] Sorensen, H. K., Jones, D. L, Burrus, C. S. & Heideman, M. T., On Computing the
Discrete Hartley Transform, |IEEE Trans. ASSP, Voal. 33, No. 4, October 1985.

[19] Hecht, E. & Zgac, A., Optics, Addison-Wedley, 1979.

[20] Evans, David M. W., An Improved Digit Reversal Permutation Algorithm for the Fast
Fourier and Hartley Transforms, IEEE Trans. ASSP, Vol. 35, No. 8, August
1987.

[21] Le-Ngoc, T., & Vo, M.T., Implementation and Performance of the Fast Hartley
Transform, IEEE Micro, October 1989.

[22] Kwong, C. P., & Shiu, K. P., Sructured Fast Hartley Transform Algorithms, |IEEE Trans.
ASSP, Voal. 34, No. 4, August 1986.

[23] Knaster, Scott, How to Write Macintosh Software, The Debugging Reference for
Macintosh, Second Ed., Hayden Book Co., 1988.

[24] , Analog Devices ADSP 2100 Applications Handbook and Users Manual.
Analog Devices Signal Processing Division, 1988.

[25] Oppenheim, A.V., & Schafer, R. W., Digital Sgnal Processing, Prentice-Hall, 1975.

[26] Kabal, P. & Sayar, B., Performance of Fixed-Point FFT's. Rounding and Scaling
Considerations, IEEE ICASSP, 1986.

[27] Bracewell, R. N., Buneman, O., Hao, H. & Villasenor, J., Fast Two-Dimensional Hartley
Transform, Proc. IEEE. Vol. 74, No. 9, September 1986.

[28] , Inside Macintosh, Vol 1-5, Addison Wesley, 1985.

[29] Eiserling, F. A., Structure of T4 virion, from Bacteriophage T4, Edited by C. Matthew, E.
Kutter, G. Mosig & P. Berget, American Society for Microbiology, Washington,
DC, 1983.

[30] Pei, S. C., & Wu, J. L., Split-Radix Fast Hartley Transform, Electronics Letters, January
1986.

[31] Pei, S. C., & Wu, J. L., Split Vector Radix 2-D Fast Fourier Transform, IEEE Trans.
Circuits and Systems, August 1987.

[32] Kumaresan, R. & Gupta, P. K., Vector Radix Algorithm for a 2-D Discrete Hartley
Transform, Proc. |IEEE, Vol. 74, No. 5, May 1986.

Additional Reading
Chamberlin, H., Musical Applications of Microprocessors, Hayden Book Co., 1985.

Lord, R. H., Fast Fourier for the 6800, BY TE, February 1989.

129
O'Nelll, M. A., Faster than Fast Fourier, BYTE, April 1988.

Pak, C. H. & Martin D. Fox, Fast Hartley Transforms for Image Processing, |EEE Trans.
Medical Imaging, Vol. 7, No. 2, June 1988.

Rivard, G. E., Direct Fast Fourier Transform of Bivariate Functions, |EEE Trans. ASSP, Vol.
25, No. 3, June 1977.

Said, S. M. & K. R. Dimond, Improved Implementation of FFT Algorithm on a High-
Performance Processor, Electronics Letters, Vol. 20, No. 8, 12 April 1984.

Stigall, P. D., Ziemer, R. E. & Hudec, L., A Performance Sudy of 16-bit Microcomputer-imple-
mented FFT Algorithms, |IEEE Micro, November 1982.

Zhi-Jian, M. & Duhamel, P., In-Place Butterfly-Style FFT of 2-D Real Sequences, |EEE Trans.
ASSP Vol. 36, No. 10, October 1988.

