Skip to content, Skip to search


SPIM Workflow Manager For HPC

24 bytes added, 03:38, 29 August 2018
SPIM data processing pipeline
The sheer amount of the SPIM data requires conversion from raw microscopy data to Hierarchical Data Format (HDF5) for efficient input/output access and visualization in Fiji's BigDataViewer (BDV) []. BDV uses an XML file to store experiment metadata (i.e. number of angles, time points, channels etc.). Although the conversion to HDF5 is a parallelizable procedure, further updating the XML file downstream in the pipeline is not; and per-time point XML files have to be created and then merged after completion of the registration and fusion steps. Consequently, the parallel processing of individual time points on an HPC resource (conversion to HDF5, registration, fusion and deconvolution) is interrupted by non-parallelizable steps (time-lapse registration and XML merging).
Pipeline input parameters are entered by a user into a config.yaml configuration file. In the first step, the .czi raw data are concurrently resaved into the HDF5 container in parallel on the cluster. Similarly, the individual time points are registered in parallel using fluorescent beads as fiduciary markers on the cluster. Subsequently, a non-parallel job executed by Snakemake consolidate the registration XML files into a single one, followed by time-lapse registration using the beads segmented during the spatial registration step. After this, the pipeline diverge into either parallel content-based fusion or parallel multi-view deconvolution. To achieve this divergence in practice, the Snakemake pipeline is launched from the Fiji plugin as two separate jobs using two different config.yaml files set to execute content-based fusion and deconvolution respectively. In the final stage of the pipeline, the fusion/deconvolution output is saved into a new HDF5 container. Figure [[File:Drosophila.pdf]] shows results of registration, fusion and deconvolution in different time points.
= Instalation =