

ImageJ2
Directions & Goals

Strengths of ImageJ

● Cross-platform and public domain
● Macro language makes batch processing easy
● Wealth of existing image processing plugins
● Large science-oriented community of experts
● WSR: strong leader/maintainer/authority

Weaknesses of ImageJ

● Grew organically over the past decade
– Many technical issues (details later)
– Code is “micro-optimized”

● Difficult for community to contribute to core
– No source control
– Everything goes through WSR

● As a result, fractured community efforts
– Always difficult to overcome barriers to entry

Specific Problems

Problems: VisBio

● Limited support for large datasets
– Image planes larger than 2GB
– Datasets larger than available RAM
– VirtualStacks cache only one plane at a time

● No support for 3D visualization
– Volume rendering
– Arbitrary slicing
– Realtime animation

● Also needs better support for ROIs

Problems: Slim Plotter

● No support for new dimensions
– Emission spectra
– Lifetime
– Polarization

● No support for processing inherent to viz
– Exponential curve fitting
– Spectral unmixing

Problems: Fiji

● Distributing plugins is external to ImageJ
● Keeping everything up to date is complex
● No standard for documenting plugins
● Not easy enough to prototype algorithms

– Plugins require too much boilerplate code
– No modular command framework for using

Macro Recorder with scripts
– Case logic for multiple pixel types is messy

● AWT dependencies preclude headless use

Problems: TrakEM2

● No support for displaying registered images
– No display mechanism for multiple image tiles
– No mechanism for transformation from data to

display (e.g., affine)
● Regions of interest are limited

– No vector-based ROIs (i.e., ROIs are bitmasks)
– Multiple ROIs are tacked on (ROI Manager)
– Confusing interplay between ROIs, masks &

thresholds with measurement tools

Problems: ROIs (Michael Doube)
● Recently I've been frustrated by ROI's being limited to

2D. With the emerging utility of the 3D viewer and the
proposal that ImageJ 2.0 handles N-dimensional data,
it makes sense that ROIs should keep up with this
development.

● In other words, in an N-dimensional image, one should
be able to specify and visualise an N-dimensional ROI.
 So you can have a 3D VOI, and a 4D VOI with time
limits (or even changing shape over time), or limit the
ROI to a channel (5D).

Problems: ROIs (J-Y Tinevez)
● I recently tried to code weird shapes as ROIs in ImageJ. They

were the results of a segmentation with constrained shapes.
Because I wanted to have something nice for the user, The
ROIs had to be mouse-interactive (resizable, moveable etc..). I
had a difficult time.

● Johannes proposed on the Fiji-devel list an abstract class
whose goal was to facilitate this interaction.

● But we still gave to comply to ImageJ ij.gui.Roi master class,
which is a concrete class in charge of drawing rectangle ROIs.
Inside this class, there is everything: the logic to draw it, to
interact with the user, with the image container, and the image
data. Any homemade ROI must inherit from this class, there is
no interface to implement.

Problems: ROIs (J-Y Tinevez)
● What I would like to propose here is to go for an interface

hierarchy for ROIs, that is well decoupled, and that would allow
the flexible design of new ROIs.

● We use ROIs for many purposes, for instance:
– user interaction

● draw a rectangle to crop an image
● measure intensity with a complex area
● add non-destructive annotations

– as input/output for plugins, for instance a result of segmentation

● From this you can see that they need to:
– know how to draw themselves as an overlay
– comply to some interface to be an input of some plugins
– know how to interact with mouse clicks and drag

Problems: µManager (N. Stuurman)
● 1. The Brightness/Contrast tool. Display of the histogram

cannot be reliably set to the dynamic range of the camera
(i.e., it always automatically goes back to the range of the
minimum and maximum pixel value in the image, which
can be extremely deceptive). No gamma correction. No
method to update histogram when the image changes. No
log display of the histogram. We ended up writing our
own, but things are still clunky because acquired images
(shown in a modified Image5D viewer) can only be
controlled by the ImageJ B&C tool.

Problems: µManager (N. Stuurman)
● 2. Lack of plugin API. We have been bitten a number of

times by internal changes in ImageJ breaking our code.
Wayne is very responsive, but this still causes confusion.

● 3. Lack of standard for Multi-Dimensional viewer. We
ended up using Image5D viewer, Hyperstacks came later.
My impression is that the UI of Image5D is easier for users
than the UI of Hyperstacks. In any case, we will be helped
by a standard viewer for multi-dimensional images that
integrates nicely with other ImageJ tools (like 3D viewers),
and that is extensible (we do need to add a number of
buttons that interface with image acquisition).

Problems: µManager (N. Stuurman)
● 4. MDI versus SDI. Not sure if this was on your list already

(all of you have certainly debated this in the past!), but it
seems that many people prefer the MDI model. On the
Mac, it is pretty weird that a single application has different
menus depending on which window you select (in our
case, ImageJ windows versus Micro-manager window).

Problems: Miscellaneous

● G. Landini: no color space support (e.g., HSB)
● F. Hessman: domain coordinate systems

– S&S are planning support within imglib
– ImageJX consensus is to punt on this for now
– Need to find a group with this use case first

● Legacy AWT interface limits use of Swing
– ImageJ cannot use different L&Fs
– AWT is missing features (JSpinner, JInternalPane)
– Swing development is active, unlike legacy AWT

Problems: Compatibility

● Advantage of ImageJ: wealth of existing code
● Problem: ImageJ2 will break that code
● Examples:

– ImageProcessor.getPixels()
– All non-private, non-final fields
– Subclasses created to sidestep API issues
– Even private fields—setAccessible(true)

Problems: Interoperability

● FARSIGHT: ITK-driven segmentation routines
are difficult to use from Java

● CellProfiler: How can scientists combine
workflows between CellProfiler and ImageJ?

● OMERO: Database-backed images are kludgy
● Others: KNIME, Endrov, BioImageXD, PSLID...

Problems: Performance

● Traditional tradeoff between space & time
● Tradeoff between generality & performance

– Moving toward generality requires that we
remain aware of performance issues

– But flexibility and usability remain paramount
● OpenCL is promising but negates many of

imglib's gains in generality

Solutions?

Components of ImageJ2

● Major components of ImageJ2
1)Data model – ij.process
2)Display – ij.gui
3)Input/output – ij.io
4)Regions of interest – various
5)Scripting & plugins – ij.macro

● All of these areas have significant limitations and will
benefit from enhancements and refactoring

Components of ImageJ2

● Define/refine API for each component
1)Data model – ij.process→imagej.process
2)Display – ij.gui→imagej.gui
3)Input/output – ij.io→imagej.io
4)Regions of interest – various→imagej.roi
5)Scripting & plugins – ij.macro→imagej.scripting

● How to draft the new API?
– Spend a week in a room fleshing this out?
– Or assign different packages to each of us?
– Danger of over-planning

Components of ImageJ2

● Relevant technologies
1)Data model – imglib library
2)Display – Java AWT, JAI, Swing
3)Input/output – Bio-Formats architecture
4)Regions of interest – Java AWT, JHotDraw, OME-XML
5)Scripting & plugins – Java 6 Scripting Framework

● More exploration of some technologies needed

Components of ImageJ2

● Break down implementation focus?
1)Data model – Aivar?
2)Display – Brian? Grant? Rick?
3)Input/output – Barry? Curtis?
4)Regions of interest – Brian?
5)Scripting & plugins – Grant? Rick?

● Everyone must be familiar with good dev practices:
– Unit testing (maybe even test-driven development?)
– Dependency injection
– Short methods & classes, few side effects

Next steps?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

