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Goals of the presentation

� Explore different types of nonparametric
histogram-based thresholding algorithms.

� Send the message that there are several
different approaches and algorithms out there.

� Talk about the general principles of different
algorithms without going too much into the
details.

� Show how the algorithms can be implemented.

� To understand the formulae presented, you
need to refer to the original papers or other
literature. DIP III – p. 2/51



Thresholding

� Thresholding converts a gray-level image into
a binary one.

� The binary levels may represent objects and
background.

� Pixels whose value exceeds a critical value are
assigned to one category, and the rest to the
other.

� Global thresholding: the same threshold is
used across the whole image.

� Algorithms for automatically choosing the
threshold are needed.
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Histogram-based thresholding

� Histogram-based algorithms have been
studied extensively.

� simple

� easy to implement

� fast

� Here we study 12 different nonparametric
histogram-based thresholding algorithms.

� The algorithms have been chosen such that a
wide range of approaches is represented.

� Algorithms that use contextual information are
outside the scope of this study. DIP III – p. 4/51



Notation

� The histogram is denoted by y0, y1, . . . , yn,
where yi is the number of pixels in the image
with the gray-level i, and n is the maximum
gray-level n (255 in an 8-bit image).

� The threshold is denoted by t.

� The following partial sums are also used:

Aj =
j

∑
i=0

yi, Bj =
j

∑
i=0

iyi, Cj =
j

∑
i=0

i2yi,

for j = 0, . . . , n.
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MINIMUM algorithm

J. M. S. Prewitt and M. L. Mendelsohn, “The analysis of cell images,” in

Ann. New York Acad. Sci., vol. 128, pp. 1035-1053, 1966.

� Assumes a bimodal histogram.

� The histogram needs to be smoothed (using the
three-point mean filter) iteratively until the
histogram has only two local maxima.

� Choose t such that yt−1 > yt ≤ yt+1.

� Unsuitable for images that have a histogram
with extremely unequal peaks or a broad and
flat valley.
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MINIMUM result (1)
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MINIMUM result (2)

Threshold: t = 76
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INTERMODES algorithm

J. M. S. Prewitt and M. L. Mendelsohn, “The analysis of cell images,” in

Ann. New York Acad. Sci., vol. 128, pp. 1035-1053, 1966.

� An alternative to MINIMUM.

� Assumes a bimodal histogram.

� Find the two peaks (local maxima) yj and yk.

� Set t to (j + k)/2.

� Still unsuitable for images that have a
histogram with extremely unequal peaks.
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INTERMODES result (1)
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INTERMODES result (2)

Threshold: t = 89
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CONCAVITY algorithm (1)

A. Rosenfeld and P. De La Torre, “Histogram concavity analysis as an aid

in threshold selection,” IEEE Trans. Systems Man Cybernet., vol. 13,

pp. 231-235, 1983.

� If the image does not have distinct objects and
background, the MINIMUM and
INTERMODES algorithms are not suitable.

� A good threshold may be found at the
shoulder of the histogram.

� The shoulder location can be found based on
the concavity of the histogram.
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CONCAVITY algorithm (2)

� Construct the convex hull H of the histogram y.

� Find the local maxima of H − y.

� Set t to the value of j at which the balance
measure

bj = Aj(An − Aj)

is maximized.

� The algorithm seems to work well in many
cases, but in some cases it gives thresholds that
are clearly unusable.
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CONCAVITY result (1)
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CONCAVITY result (2)

Threshold: t = 145
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PTILE and MEDIAN algorithms

W. Doyle, “Operation useful for similarity-invariant pattern recognition,”

J. Assoc. Comput. Mach, vol. 9, pp. 259-267, 1962.

� Assumes that the percentage of object pixels is
known.

� Set t to the highest gray-level which maps at
least (100 − p)% of the pixels into the object
category.

� Not suitable if the object area is not know.

� Problem: the algorithm is parametric.

� Solution: set p = 50 so that t is the median of
the distribution of pixel values.
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MEDIAN result (2)
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MEDIAN result (2)

Threshold: t = 143
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MEAN algorithm

� Similar to the MEDIAN algorithm.

� Instead of median, set t such that it is the
integer part of the mean of all pixel values.

� With the partial sum notation, t = bBn/Anc.

� Does not take into account histogram shape, so
obviously the results are suboptimal.
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MEAN result (1)
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MEAN result (2)

Threshold: t = 118
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MOMENTS algorithm

W. Tsai, “Moment-preserving thresholding: a new approach,” Comput.

Vision Graphics Image Process., vol. 29, pp. 377-393, 1985.

� Choose t such that the binary image has the
same first three moments as the gray-level
image.

� This is achieved by setting t such that At/An is
the value of the fraction nearest to x0, where

x0 =
1

2
−

Bn/An + x2/2
√

x2
2 − 4x1

, x1 =
BnDn − C2

n

AnCn − Bn 2
,

x2 =
BnCn − AnDn

AnCn − B2
n

, Dn =
n

∑
i=0

i2yi.
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MOMENTS result (1)
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MOMENTS result (2)

Threshold: t = 112

DIP III – p. 24/51



ENTROPY algorithm (1)

J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for

gray-level picture thresholding using the entropy of the histogram,”

Comput. Vision Graphics Image Process., vol. 29, pp. 273-285, 1985.

� One of several maximum entropy algorithms.

� Divides the histogram of the image into two
probability distributions, one representing the
objects and one representing the background.

� Choose t such that the sum of the entropies of
these probability distributions is maximized.
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ENTROPY algorithm (2)

� Define the partial sums

Ej =
j

∑
i=0

yi log yi, for j = 0, . . . , n.

� Set t to the value of j at which

Ej

Aj
− log Aj +

En − Ej

An − Aj
− log An − Aj

is maximized.
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ENTROPY result (1)
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ENTROPY result (2)

Threshold: t = 192
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INTERMEANS algorithm (1)

N. Otsu, “A threshold selection method from gray-level histogram,” IEEE

Trans. Systems Man Cybernet., vol. 9, pp. 62-66, 1979.

� Choose t such that the between-class variance
is maximized and the intra-class variance is
minimized.

� The algorithm positions t midway between the
means of the two classes.

� Widely used in many applications.

� Available in MATLAB with the graythresh
function.
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INTERMEANS algorithm (2)

� Define the means of the gray levels in the two
classes

µt =
Bt

At
, νt =

Bn − Bt

An − At
.

� Set t to the value of j at which

Aj(An − Aj)(µj − νj)
2

is maximized.
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INTERMEANS result (1)
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INTERMEANS result (2)

Threshold: t = 88
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INTERMEANS(I) algorithm (1)

T. Ridler and S. Calvard, “Picture thresholding using an iterative selection

method,” IEEE Trans. Systems Man Cybernet., vol. 8, pp. 630-632, 1978.

H. J. Trussell, “Comments on ’Picture thresholding using an iterative

selection method’,” IEEE Trans. Systems Man Cybernet., vol. 9, p. 311, 1979.

� An iterative algorithm that gives similar results
as the INTERMEANS algorithm.

� Computationally less intensive than
INTERMEANS.

� The algorithm starts with an initial guess for t.
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INTERMEANS(I) algorithm (2)

� Define the means µt and νt of the two classes.

� Set t = b(mut + νt)/2c and recalculate µt and νt.

� Repeat until t has the same value in two
consecutive iterations.

� The obtained t may strongly depend on its
initial value.

� If the objects and background occupy
comparable areas, use MEAN.

� If the objects are small compared to the
background, use INTERMODES.
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INTERMEANS(I) result (1)
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INTERMEANS(I) result (2)

Threshold: t = 88
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MINERROR algorithm (1)

J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern

Recognition, vol. 19, pp. 41-47, 1986.

� Similar to the INTERMEANS algorithm.

� Views the histogram as an estimate of the
probability density function of the mixture
population (objects and background).

� Assumes a Gaussian mixture model, that is,
� the pixels in the two categories come from a

normal distribution and
� the normal distributions may have different

means as well as variances.
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MINERROR algorithm (2)

� Define the following statistics:

pt =
At

An
, qt =

An − At

An
,

σ2
t =

Ct

At
− µ2

t , τ2
t =

Cn − Ct

An − At
− ν2

t .

� Set t to the value of j at which

pj log

(

σj

pj

)

+ qj log

(

τj

qj

)

is minimized.
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MINERROR result (2)
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MINERROR result (2)

Threshold: t = 24
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MINERROR(I) algorithm (1)

J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern

Recognition, vol. 19, pp. 41-47, 1986.

� The iterative version of the MINERROR
algorithm is computationally less intensive.

� Find initial value for t using MEAN.

� The integer part of the larger solution of

x2

{

1

σ2
−

1

τ2

}

− 2x
{ µ

σ2
−

ν

τ2

}

+

{

µ2

σ2
−

ν2

τ2
+ log

(

σ2q2

τ2 p2

)}

= 0.

provides a new value for t.

� Let w0, w1 and w2 denote the three terms.
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MINERROR(I) algorithm (2)

� Set t = b(w1 +
√

(w2
1 − w0w2)/w0c.

� Recalculate all the terms using the new value
of t and re-derive t.

� Repeat until convergence.

� This minimizes the number of
misclassifications between the two normal
distributions with the given means, variances,
and proportions.

� The algorithm fails to converge if the quadratic
equation does not have a real solution.
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MINERROR(I) result (2)
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MINERROR(I) result (2)

Threshold: t = 23
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MAXLIK algorithm (1)

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” J. Royal Statist. Soc. Series B,

vol. 39, pp. 1-38, 1977.

� The problem with the INTERMEANS
algorithm is that the estimators for the statistics
are biased, because they do not allow
overlapping distributions.

� The MAXLIK algorithm takes an expectation
maximization approach for fitting mixtures of
distributions.

� Initial estimates of the statistics are obtained
from MINERROR(I). DIP III – p. 45/51



MAXLIK algorithm (2)

� The statistics are updated iteratively using:

φi =
p

σ
exp

[

−
(i − µ)2

2σ2

]

/

(

p

σ
exp

[

−
(i − µ)2

2σ2

]

+
q

τ
exp

[

−
(i − ν)2

2τ2

])

,

γi = 1 − φi ,

F =
n

∑
i=0

φiyi , G =
n

∑
i=0

γiyi ,

p = F/An, q = G/An,

µ =
n

∑
i=0

iφiyi/F, ν =
n

∑
i=0

iγiyi/G,

σ2 =
n

∑
i=0

i2φiyi/F − µ2, τ2 =
n

∑
i=0

i2γiyi/G − ν2.

� After convergence t is determined as in
INTERMEANS(I).
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MAXLIK result (2)
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MAXLIK result (2)

Threshold: t = 70
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Comparison

� Glasbey (1993) compared the presented
algorithms under the assumption of a
Gaussian mixture model (GMM).

� Not surprisingly, the algorithms that assume a
GMM were found to provide the best
performance.

� INTERMEANS was found to be better than
INTERMEANS(I).

� ENTROPY and MOMENTS were found to
sometimes give very poor results.
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Running times

Small images (256 × 256)
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Large images (1024 × 1024)
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