Segmentation and labeling in ImageJ

This document outlines an approach for implementing image labeling within ImageJ. Typically, labeling is a result of a segmentation, an algorithm for partitioning space into distinct regions by classifying pixels as foreground or background and grouping clusters of foreground pixels into distinct entities. An image labeling can define an arbitrary number of labels within an image and assign each pixel in an image to zero or more of these labels. Labeling has much in common with Regions of Interest, but the uses and mechanisms of implementation differ enough to warrant a distinction:

· Relation to a coordinate space.

· Regions of interest are binary and give a criterion for determining set identity, for instance, a bounding box or shape.
· A labeling is cardinal and names the set of pixels belonging to each label. The labeling has no geometric reference.
· Generating mechanism
· Regions of interest are often constructed manually and the parameters required to determine set identity may be succinct compared to the image data (a single threshold value that can be applied to a grayscale image, a set of defining vertices).
· A labeling is often the result of the application of an expensive algorithm to an image, executed once, resulting in a data set whose size is on the order of that of the image.

· Downstream use

· Regions of interest

· Masking the area of an image to be considered for analysis.

· Visual highlighting and annotation.

· Labels

· Partitioning of the image into regions that will be analyzed separately to yield sets of measurements that characterize the labeled entity.
· Relational operations such as seeding further segmentation (recognized nuclei seeding segmentation of cells), hierarchical grouping (for instance, particles within each labeled entity), or relation to peers (for instance, positions of neighbors).

· Algorithmic efficiency

· Determining whether a point in coordinate space is a member.
· Use cases

· Morphological operations such as dilation or skeletonization

· Hit tests

· Distance transforms

· Regions of interest – constant time, memory proportional to image size
· Labels – either O(log N) lookup time and memory proportional to N (N = # of pixels in label) or constant time and memory scaling with number of labels (with possible strategies that require constant time and constant memory after a label has been transformed into a region of interest).
· Iterating the members of a label or region of interest

· Use cases

· Measurements of area / volume

· Integrated intensity

· Moments of the region or label (e.g. centroid, solidity, radial distribution)
· Extents (x, y, z, t extents, convex hull, minimum enclosing circle)

· Regions of interest – time proportional to the size of the image times the number of regions of interest.
· Labels – time proportional to the number of pixels in the label.
· Storage

· Use cases

· In memory

· Long-term storage

· Regions of interest – storage proportional to number of regions times image size after compression.

· Labels – storage proportional to image size after compression assuming labeling is either sparse or not heavily overlapping.
It may be confusing to add a second mechanism for set identification to ImageJ, but there are clear criteria that can be used to choose which one to use: algorithms that produce an indefinite or large number of classifications should represent them as labels and algorithms that produce one classification or a geometrically derived classification should use regions of interest. Conceptually, labeling better represents the idea of particles, objects or cells as members of an image; an algorithm or plugin can use one labeling to process all objects within an image and would need to either run multiple times or receive a set of ROIs if it were to do the same in the current framework. Users currently resort to strategies which require writing hundreds of ROIs per image to disk and hundreds of plugin executions to process an image which need only have a single labeling and single execution per plugin.
Implementation

I would propose implementing labeling in the context of imglib. A labeling might support the following categories of operations:

· Instantiation: a labeling is instantiated by supplying (conceptually) lists of coordinate tuples and their labels (e.g. x,y,z and label).
· Storage and retrieval: mechanism for serializing and deserializing a labeling possibly with appropriate compression.

· Programmatic retrieval of labels – if a labeling names N different objects, this would retrieve the N names.

· Label cursors – retrieve a cursor on a label, in order to perform an algorithm on the labeled pixels: Localizable (most efficient), LocalizableByDim, possibly bound to the LocalizableByDim cursor of an image to process an image’s pixels.
· Label cursors continued – an algorithm might operate on the space as a whole and use a localizable cursor that returns a label (and the pixel associated for the label can be determined from the cursor). Also, an algorithm might use a LocalizableByDim cursor to retrieve all labels at a given pixel location (typically an array of size 0 for background pixels or 1 for singly-labeled pixels).

In addition, there are certain operations that are performed so frequently that caching of the results (or efficient computation strategy) is warranted within the labeling:

· Extents – x,y,z,t min and max per object

· Area - # of pixels per object

· Centroid or other measurements of object position (e.g. center and radius of minimum enclosing circle)

The following is a possible interface for a label:

/* Represents the assignment of labels of type T to pixels

 * in an image.

 */

public interface Labeling<T>

{

 /* Return the number of dimensions in each coordinate tuple */
 public int getNumberOfDimensions();

 /* Initialize the labeling with the coordinates of pixels and

 * their labels.

 * @param coords: an array of D arrays of N coordinates each

 * where D is the dimensionality of the space and N is the

 * number of pixels that are labeled.

 * @param labels: an array of N labelings giving the label

 * assigned to eacn of the N coordinate tuples.

 */
 public void init(int [][] coords, T[] labels);
 /* a special case where the image dimensions don’t exceed

 * 0x7FFF.

 */

 public void init(short [][] coords, T[] labels);

 public void load(java.io.InputStream stream);

 public void save(java.io.OutputStream stream);

 /* get an iterator over the labels in the labeling */
 public Iterator<T> getLabels();

 /* Produce a cursor that iterates over one label’s pixels */
 public LocalizableCursor<Type<T>> getLocalizableLabelCursor(T label);

 /* Produce a cursor that iterates over all labeled pixels,

 * returning the label of each

 */
 public LocalizableCursor<Type<T>> getLocalizableLabelCursor();

 /* A cursor that can be used to interrogate whether a pixel

 * is or isn’t labeled. getLabel() either returns null (not

 * in label) or <i>label</i> (is in label).

 */

 public LocalizableByDimCursor<Type<T>> getLocalizableByDimLabelCursor(T label);

 /* A cursor that can be used to determine a pixel’s label.

 * An array is returned because a pixel might have more than

 * one label.

 */
 public LocalizableByDimCursor<Type<T[]>> getLocalizableByDimLabelCursor(T label);

 /* Produce a cursor that iterates the pixels of an image

 * for a given label using a LocalizableByDim cursor on that

 * image.

 */

 public LocalizableCursor<I extends Type<I>, C extends LocalizableByDimCursor<I>> getImageCursor(T label, C cursor);

 /* # of pixels with the given label */

 public int getPixelCount(T label);

 /* minimum extent of a given label */
 public int [] getMinimumExtent(T label);

 /* maximum extent of a given label */
 public int [] getMaximumExtent(T label);

 /* Centroid of given label */
 public int [] getCentroid(T label);

}

Labelings are retrieved from factories. There are implementation strategies that optimize for speed when iterating, for compactness of representation (e.g. run-length encoded for blobby objects such as nuclei, but not for stringy objects such as neurons) or for random access retrieval (a labeling backed by a container of labels, especially when pixels are uniquely labeled, although it is possible to use multiple containers with labels segregated so that none in the same container overlap).
Internal implementation

It’s not that difficult to code a general-purpose implementation that performs reasonably well for images that are core-resident. The coordinate arrays could be sorted by label number and referenced using a map of a label to that label’s start and end index in the sorted array. The image and localizable cursors would be views on the coordinate array and the LocalizableByDim cursor would contain a Boolean array whose dimension was the extent of the associated label. The LocalizableByDim cursor over the entire set of labels would create containers of non-overlapping labels (typically one container if no labels overlapped) and would maintain one LocalizableByDim cursor on each container.

load and save are a bit controversial in that they would dictate a storage format that would have to be supported for the lifetime of ImageJ. The format should be a topic of further investigation and should consider issues of compression, dimensionality, multiple labels per pixel and efficient access by a labeling implementation that uses the format as a backing store.
Use case: CellProfiler

CellProfiler has two internal representations for labelings, one that is a 2-d integer array and one that is a list of tuples of coordinate and labels. The bridge between CellProfiler and ImageJ can be viewed as a communication medium. Instantiating a labeling using coordinates and labels is particularly efficient for CellProfiler, especially for sparsely-labeled images. CellProfiler could easily make use of ImageJ plugins that operate on one or a few labelings and a few images or that produce their own labelings; each plugin would be called, in turn, with the set of labelings and images appropriate for the set of images being processed (representing channels in a single field-of-view). Conversely, it would be expensive in terms of bandwidth and complex in terms of structure to have CellProfiler create a region of interest inside ImageJ for the pixels of each label in a segmentation and then loop over the ImageJ plugins using the single region of interest for each label.
Use case: 3d Spots Analysis

This use case was presented at the ImageJ 2010 conference: http://imagejconf.tudor.lu/_media/archive/imagej-user-and-developer-conference-2010/presentations/boudier/spots3d-imagej2010.pdf
The user identified stars in a 3-dimensional space using filtering, thresholding and segmentation. The user then measured features of each segmented star such as volume and integrated intensity as well as radial distributions of populations of stars. In the context of ImageJ, there are three possibilities:

· Segmentation and measurement must be combined within the same plugin
· Segmentation must be represented by hundreds of regions of interest by one plugin and measurement plugins must be run using a script that loops over the regions.
· Segmentation must be represented as an image where each color hue or gray level represents a different label and any measurement plugin must be able to correlate the gray level or hue to a particular object.

Labeling, as proposed, separates segmentation and measurement and associates each object and its derivative measurements and relations with the object’s label. The relation of a label to its pixels is explicit and is shared by any compliant plugin. The volume measurement is provided directly, intensity measurements are produced trivially and the relational measurements (radial distribution) can be computed in a straightforward manner.
Use case: Multilevel analysis of Nuclear Dynamics in Lamin Perturbed Human Fibroblasts

This use case was presented at the ImageJ 2010 conference (http://archive.ugent.be/record/987486). The user analyzed time-lapse movies of cells with their telomeres stained. The analysis requires a two-level segmentation and tracking; each 2-d image of cells has to be segmented and tracked between frames and the telomeres within the cells need to be segmented and tracked, using the frame-to-frame movement of the cell to inform the telomere tracking. If I remember correctly, the user represented the segmentation as hundreds of ROIs and used a looping script to analyze each.
The proposed scheme could be used to label the cells and compare their shapes and positions to those in the previous frame of the movie to determine a coordinate transformation between the pixels in the cell in one frame and the next. The telomere segmentation and coordinate transformation could then be used track the telomeres from frame to frame.

Use case: Convex hull algorithm

The convex hull algorithm finds the set of points in a 2-d space that form the convex polygon with the smallest area that encloses all points in the set.

Algorithm:

· Given a labeling L, loop over all labels found by calling L.getLabels() to get an iterator producing label.
· Find C, the centroid by calling L.getCentroid(label)

· Allocate arrays to hold the X, Y and A = angle for each pixel in label using L.getPixelCount(label) to size the arrays.

· For each position in the cursor, L.getLocalizableLabelCursor(label), record the X and Y position in the respective arrays and calculate the angle using the arctangent of the line between the X and Y position and the centroid.

· Sort all points by angle so that it is trivial to find the point to the left and right of a given point.

· Loop until there are 3 or fewer points or until an iteration removes no points
· Loop over all points in the array

· Remove (conceptually) a point from the array if that point is either on the line between the points to the left and right or is on the same side of the line as the centroid.

Use case: The mass-displacement of intensity

The mass displacement of an object in an image is the distance from the centroid of that object to the object’s center of mass. Perhaps a researcher has two cell phenotypes: one that, when stained has a uniform distribution of intensity across the whole cell and one in which the stain is localized and generally offset from the center. The phenotypes might then be distinguished by the mass displacement measured on the image of the stain.
Algorithm (which is easily generalizable to N-d):

· Given a labeling L, loop over all labels found by calling L.getLabels()

· For each label, get c, the centroid by calling L.getCentroid()

· Get an image cursor by calling L.getImageCursor(label, imagecursor)

· Initialize two doubles, X and Y to zero

· For each pixel in the image cursor

· Get the X and Y position (xp, yp) for the cursor and subtract the coordinates of the centroid.

· Multiply xp by the image intensity and accumulate in X, similarly yp

· Record a value of sqrt(X*X+Y*Y) as the mass displacement for the label

Use case: the dilation of each labeled object

Binary Dilation is the morphological transformation of a binary image by a structuring element in which a pixel in the output image is a foreground pixel if there is any corresponding foreground pixel in the input image convolved with the structuring element. Conceptually, a pixel is turned from background to foreground if any of its neighbors (as defined by the structuring element) is also foreground and the result of the operation is to make objects expand.
The algorithm dilates each object in the input labeling and produces a second labeling, possibly with overlap between objects.

Algorithm for dilation using a 3x3 structuring element (8-connected):

· Loop over all labels using L.getLabels()

· Create a LocalizableByDim cursor, C, using L.getLocalizableByDimLabelCursor(label)

· Create ArrayLists to hold the X and Y locations of the labeled pixels in the output

· Loop over all coordinates xp and yp between 1-minimum and 1+maximum for the minimum and maximum extents of the label (in the X and Y directions)
· Loop over all coordinates from xp-1 to xp+1 and yp-1 to yp+1

· Set the LocalizableByDim cursor, C, to the coordinate

· Exit the loop and record xp,yp in the array list if the value returned by C.getType() == label

· Concatenate all X and Y array lists and create runs of each associated label value to make an array of labels.

· Create the output labeling and call .init with the coordinate arrays and the label array.
Conclusion

I’d like you all on the mailing list to consider this, not necessarily as a fait-accompli, but as a straw man for people to use as a starting point or as a foil for your own ideas. I have good experience with regard to segmentation and algorithms but I’m really weak on ImageJ culture and the universe of plugins. I think that what I have proposed is a great fit for imglib and plays off its strengths. I’d be willing to code a useable implementation and possibly implement a simple plugin for segmentation or adapt an existing one if someone could point me in the right direction.
